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Abstract

This thesis presents an empirical study of the effects of topology on
cellular automata rule spaces. The classical definition of a cellular
automaton is restricted to that of a regular lattice, often with pe-
riodic boundary conditions. This definition is extended to allow for
arbitrary topologies. The dynamics of cellular automata within the
triangular tessellation were analysed when transformed to 2-manifolds

of topological genus 0, genus 1 and genus 2.

Cellular automata dynamics were analysed from a statistical mechan-
ics perspective. The sample sizes required to obtain accurate entropy
calculations were determined by an entropy error analysis which ob-
served the error in the computed entropy against increasing sample
sizes. Each cellular automata rule space was sampled repeatedly and
the selected cellular automata were simulated over many thousands
of trials for each topology. This resulted in an entropy distribution

for each rule space.

The computed entropy distributions are indicative of the cellular au-
tomata dynamical class distribution. Through the comparison of these
dynamical class distributions using the E-statistic, it was identified
that such topological changes cause these distributions to alter. This
is a significant result which implies that both global structure and
local dynamics play a important role in defining long term behaviour

of cellular automata.
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Chapter 1

Introduction

There are many examples of complex phenomena round us. Many complex sys-
tems are the result many interacting smaller systems which are themselves sim-

ple’.

Biological systems are built from many interacting simple cells, complex
chemical compounds are result of bonds formed between simple atoms, and atoms
themselves consist of many sub-atomic particles all interacting at local scales.

Perhaps the most profound example is the human brain which is able to
outperform modern computers over a vast range of computational tasks; par-
ticularly visual pattern recognition. This performance is achieved despite the
brain’s relatively low frequency of [ 10® neuron firings/second when compared
against the frequency of modern micro-processor frequencies which are 0 10
clock pulses/second [5]. The many millions of locally interconnected and coordi-
nated neuron firing patterns in the brain forms a massively parallel, decentralised
processor which is capable of such performance.

Cellular Automata, which are mathematical models of interacting simple sys-
tems, provide and abstraction from real complex phenomena and enable com-
plexity to be studied as a topic of its own [76]. The research area of mathematics
known as complex systems theory is concerned with the study of systems in which
complexity arises from simple local interactions. The ultimate aim of complex
systems theory is to find general laws and principles which can be applied to any

real-world example of complexity to gain insight into how the system works [64].

1By comparison to the system as a whole.
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Some have speculated that the universe itself could even consist of one large
cellular automaton [60]. Recently, equivalences have been shown between a cellu-
lar automaton and a 1-dimensional quantum field theory [23]. Complex systems
theory may provide the insights required to establish the long sought Grand Uni-
fied Theory [21, 66, 70].

When a cellular automaton is defined on a higher dimensionality’ the ques-
tion could be posed, “What topology should define the space of neighbourhoods?”.
To be in any sort of position to answer this question an understanding of how
cellular automaton dynamics can be affected by topology is required. It has been
demonstrated that topological perturbations can result in dramatical alterations
in the long term evolution of some cellular automata [32, 33, 42]. Surprisingly,
very few studies to date have been produced with a focus on the topic of topology
and it’s ability to control cellular automata dynamics [16]. The question of how
topology can affect cellular automata rule spaces is the focus of this study.

This chapter presents an overview of this study. The general background of
the research topic is given in Section 1.1 and the specific context of this project is
established in Section 1.2. The purpose of the study, the statement of the research
questions, and limitations and scope of the study are presented in sections 1.3
and 1.4. The chapter will then conclude with an outline of the structure of the

rest of this thesis.

1.1 Background

Cellular Automata can be defined as an array of interconnected finite state au-
tomata, which are often referred to as cells [61]. The next state that a cell will
take on is determined by the current state of the cell itself and the of it’s neigh-
bours which are typically the immediately adjacent cells. The rules that govern
this state transition are provided by a local state transition function. All cells
within a cellular automaton update synchronously at each time-step according

to their local state transition function, which is usually identical across all cells.

Presumably, this would be required for any realistic model of physics.
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This synchronised update results in an evolution of the cellular automaton cell
state configuration.

Cellular automata are discrete dynamical systems [72]. Across the space of
local state transition functions a vast range of dynamical behaviours such as point
attractors, oscillators (ordered dynamics), strange attractors (chaotic dynamics),
and long complex transients (complex dynamics) are observed [28, 63, 74]. This
richness in dynamical possibilities can even be shown to exist in the simplest
of cellular automata, the elementary cellular automata, which consist of simple
binary finite state automata on a one-dimensional array with each cell connected
only to the cells to the immediate left and right [62].

These simple dynamical systems have been shown to be powerful enough to
represent computational processes [4]. Cellular automata such as the famous Con-
way’s Game of Life and Rule 110 have been shown to be Turing Complete, which
means they can themselves be considered as computers [11, 60]. The existence of
universal computation implies that for any program there exits an initial config-
uration which encodes the program such that the cellular automaton’s evolution
represents the program’s execution.

There are many cases in which reformulation of a problem as a cellular au-
tomaton has aided in gaining new insight into the particular field under study [4].
In general this reformulation step is non-trivial [9], however cellular automaton
models have been applied successfully in many fields of Science and Engineering,
at times out-performing traditional computing approaches. Contributions to the
study of complexity in general will further the ability to model phenomena in a
cellular automaton framework which many revolutionise methods of scientific en-
quiry or provide additional methods for scientists to validate hypotheses [4]. The
pursuit of a more in depth understanding of the modelling potential of cellular

automata is one of the primary motivations of this study [64].

1.2 Context

The study of complexity using cellular automata usually focuses on the definition
of the state transition function. In recent years however, a small number of

studies have experimented with the definition to investigate other aspects which
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may influence the emergence of complexity from simple interactions [16, 42].
One interesting extension is the removal of the requirement for cells be arranged
on a regular lattice [32, 55]. In the most general case, cellular automata can
be defined on graphs. These graph cellular automata (also called generalised
automata networks [55]) can be defined on any connected graph.

For some graph cellular automata it has been shown that graph rewiring can
completely change the dynamics, without changing the definition of the local state
transition function [16, 32]. It was also show that some graph types had a higher
concentration of complex cellular automata [33]. By the introduction of random
wirings in an otherwise regular lattice, a complex behaviour may completely
degrade to a simple fixed pattern [16, 42]. Subtle variations in the dynamics of a
complex cellular automaton defined on a sphere have also been shown to expose
novel logic implementations [57].

In general though, very little research has been done on the topic of topology
and its influence on cellular automata dynamics [16]. This is surprising, as it has
many applications for improving the performance and/or stability of systems [42,

55).

1.3 Purpose

The purpose of this study is to contribute to the knowledge base of complex
systems theory through the investigation of how cellular automata behaviour
can be influenced by topology. Most of the previous studies in this area have
looked at random re-wirings, which completely break the homogeneity of the
local neighbourhood, which is not necessarily desirable. In this study, topological
variations which preserve homogeneity of local neighbourhoods were investigated
instead.

This thesis presents a quantitative study of the variations in cellular automata
observed under topological variations that preserve graph regularity. A graph is
reqular when all graph vertices have the same degree, that is, they have the same
number of incident edges and hence neighbours. This constraint on topology
allows any cellular automaton rule to be defined consistently across any topology,

thus enabling us to study the global structure of the most complete rule space.



1.4 Limitations and Scope

This is one of the major restrictions in previous studies, in which only a very
small subset of rule types can actually be defined consistently across topologies
with varying neighbourhood sizes.

Specifically, topologies which are isomorph to some mesh representing a 2-
manifold were selected. The variations in topology were based on the topological
genus of the mesh. Thus our study can be considered as a broad quantitative
study similar to that of Marr et al. [32, 33] but looking at topologies more in line
with those considered by Ventrella [57].

Dramatic changes in cellular automata dynamics are referred to as critical
phenomena [16]. The research questions of this study a centered around the
critical phenomena caused by topological variations of this kind. Specifically this

study will aim toward answering the following questions:

() Can critical phenomena be caused by topological variations which preserve

homogeneity of local neighbourhoods?

0 Do critical phenomena occur often enough for to cause a significant change
in the distribution of cellular automata dynamical classes across the rule
space? If so, which topologies are best for maximising the concentration of

a particular class.

[0 Can other dynamical differences still be observed across topologies when no

critical phenomena are observed?

In this study, the dynamical classes of thousands of cellular automata are
inferred using a statistical mechanics approach in which a measure of dis-order
is computed through repeated simulation from random initial conditions. This
allows a dynamical class distribution to be constructed for rule spaces on each
topology, which is then compared using a distribution-free statistical test for

equality.

1.4 Limitations and Scope

The scope of this project is restricted to two dimensional, binary-state cellular

automata in the triangular tessellation (i.e., a triangular grid) [7, 60]. This has
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been done primarily to reduce the rule space size so that a statistical mechanics
approach is feasible. The triangular tessellation is sufficient to represent any
surface, which reduces the complexity of topology construction. Very few studies
have investigate the triangular tessellation [7], rather the square tessellation is
the most common two dimensional representation [57, 60]. Binary-state cellular
automata in the triangular tessellation can be constructed with a neighbourhood
size of 4, which is only one greater than the one dimensional elementary cellular
automata; thus these simple triangular neighbourhoods may be considered to be
the two dimensional equivalent of elementary cellular automata.

This study applies an experimental approach; thus evidence for or against a
given hypothesis can be provided, but it cannot generally be proven or dis-proven
via this approach. Such proof would require a detailed formal mathematical
approach, with is far beyond the scope of this study. This study, however, will
provide a basis for which a more mathematically formal proof may be constructed
for the necessary and sufficient conditions for the existence of critical phenomena
in graph cellular automata.

The neighbourhood homogeneity preserving topologies considered in this study
are those which are derived from triangular meshes of a sphere, torus, and double-
torus. It follows that any trends observed in this study are restricted to these
topologies. However, conjecture is still made at times that such trends extend to

other topologies with genus g> 2.

1.5 Thesis Outline

In Chapter 2, a detailed review of the literature relating to cellular automata and
critical phenomena is presented. This chapter includes relevant formal definitions
of cellular automata and geometric topology, discusses dynamical classification
schemes, and summarises current methods of analysis. The few studies to date
related to critical phenomena caused by topological variations are also given an
in depth exposition. Thus highlighting the current state of research and how this
study represents a unique contribution.

Chapter 3 describes the research methodology applied in this study. This

includes derivation of the null hypothesis and the experimental design. Technical
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details on cellular automata and topology generation, entropy error analysis,
simulation methods, and data analysis algorithms are all presented in this chapter.

In Chapter 4 the results and discussion is presented. The results section
describes the direct results of error analysis tests, simulations, and statistical
hypothesis test with little or no interpretation. The discussion section, provides
more of an interpretation of the results and provides a basis for some conjecture.

Finally, Chapter 5 concludes the thesis. This chapter will relate findings back
to the research questions, and highlight future work that may be done to validate

and extend this work.
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Chapter 2

Literature Review

In this chapter, I will present a review of the literature from the study of cellular
automata. Due to the long'history of the study of cellular automata and, more
broadly, discrete dynamical systems, it would be an impossible task to review
all the literature. The sections that follow provide details of key topics from the
literature that are foundational to my study such as the definition of cellular
automata, the analysis of cellular automata evolution, and the study of critical

phenomena induced by topological variations.

2.1 Cellular Automata

A cellular automaton is commonly described as a lattice of identical finite state
automata (i.e., simple machines that can only be in a finite number of states).
These finite state automata, typically referred to as sites or cells, update their
states synchronously with each other [4, 61]. The next state of each cell is deter-
mined from it’s current state and the states the cells in it’s local neighbourhood
(i.e., adjacent cells in the lattice). The sequence of all cell states forms the cel-
lular automaton’s configuration. A new configuration is determined from the
synchronous update of the cells, resulting is a sequence of configurations referred

to as the automaton’s evolution.

That is, long in terms of the age of Computer Science.
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Cellular automata can be considered as discrete dynamical systems; the dis-
crete version of continuous dynamical systems such as partial differential equa-
tions. Despite the simplicity of their construction, their evolutions have been
shown to exhibit a wide range of dynamical characteristics. This ranges from
simple convergent behaviour to complex behaviour capable of mimicking real
phenomena or even performing computations [11, 28, 76].

The range of dynamics possible even from simple cellular automata makes
them a powerful tool for modelling phenomena, with applications in physics,
theoretical biology, engineering and computer science. The study of cellular au-
tomata has lead to the field of complex systems theory; a field of mathematics
dealing with how complex global dynamics can emerge from simple interacting
structures [64]. It may be that complex systems theory holds the key to under-
standing the fundamental properties of ”self-organising” and ”self-replicating”
systems, the nature of computation, and to develop a grand unified theory of the

universe [21, 23, 70].

2.1.1 History of Cellular Automata

The first formalisation of cellular automata is attributed to John von Neumann
though his study of self-replication in the late 1940’s to 1950’s [59]. By using
cellular automata Von Neumann was able to build a universal constructor, and
hence a machine that could build a copy of itself.

The study of cellular automata progressed slowly though the 1960’s and
1970’s, although through this period some important discoveries were made. John
Conway constructed a 2-dimensional binary cellular automaton now known as
Conway’s game of life, which was shown to be capable of supporting complex
patterns [18]. Conway’s game of life was proven to be computationally univer-
sal by Robert Wainwright in 1974 [60]. During this time Stuart Kauffman also
developed is variant of cellular automata called random boolean networks which
he showed to be an accurate model predicting the number of cell species derived
from a genetic regulatory network of a given size [26].

An explosion of interest in cellular automata began in the 1980’s when Stephan

Wolfram present a detailed study of the statistical mechanics of the simplest class

10
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of cellular automata [61, 62, 63]. Wolfram showed that even these elementary cel-
lular automata could support very complex behaviour [63]. Wolfram suggested
that cellular automata were ideal for modelling systems that are difficult to model
with traditional continuous mechanics [64]. Wolfram also coined the term complex
systems theory referring to the study of complexity in an abstract context [64],
and posed twenty unsolved problems of interest in the field [65]. Complex sys-
tems theory was shown to have many implications for the study of real complex
phenomena [64, 66].

In 2002 Wolfram release his book titled A New Kind of Science which is
dedicated to presenting findings in the study of cellular automata as profoundly
important to all areas of science [70]. Soon after the publication of A New Kind
of Science, Matthew Cook presented his proof that the elementary cellular au-
tomaton Rule 110 was computationally universal [11]. This proof supported

conjectures made by Wolfram.

2.1.2 Formal Definition of Cellular Automata

There are many differences in notation and terminology between authors when
referring to cellular automata [4, 28, 32, 55, 61]. In this section, the common
features from the literature are extracted to present a formal definition of cellu-
lar automata. This formal definition will be utilised heavily in the proceeding

chapters.

2.1.2.1 Regular Cellular Automata

Usually when the term cellular automata is used in the literature it is referring to
reqular cellular automata [32, 55, 57]. A regular cellular automaton as a 4-tuple
consisting of a d-dimensional lattice (which can be infinite), a finite alphabet of
states, a set of offsets representing the neighbourhood and a local state transition

function. More formally we define a cellular automaton as in Definition 1.

Definition 1 Let A = (L;X;U;g) define a d-dimensional cellular automaton
where L [1 Z9 is a set of d-tuples representing a regular lattice of cells and X; 2 L
is the ith cell location, ¥ is a finite set of states referred to as the alphabet,

11
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U="h;:x; 2 Lg is a set of local neighbourhoods h; =fy :y =x; +z" (y 2
LYA (z2 forOr 4+ 1;::2;0; 20051 U 1;rgh)g of uniform size k, and g: X! X

1s the local state transition function.
At any given time t each cell is associated with a single state (12 X.

Definition 2 Let C : L ! X be a mapping from a cell X; 2 L to a state 12 X
such that CY(x;) represents the state of cell X; at time t. Let C'(h;) denote the
local neighbourhood configuration fCt(y) : y 2 hig.

Definition 2 leads to the construction of the global configuration of a cellular

automaton.

Definition 3 Let [t = fCY(x;) : X; 2 Lg be the configuration of a cellular au-
tomaton A at time t. [t 2 ® where ® is the set of all possible configurations of
A.

The evolution of a cellular automaton is the sequence of configurations gen-
erated by repeated synchronous application of the local state transition function
g. This can be defined as a recurrence relation in terms of a global configuration

transition function.

Definition 4 Let the recurrence relation 1 = f(f); t 0 0 be the evolu-
tion of A, where f . ® | & is the global configuration transition function

f=f(hMN =fCYx;):x; 2 LgN (T =fg(C'(hy)) : hy 2 Ugg.

2.1.2.2 Random Boolean Networks

Random boolean networks are discrete dynamical systems similar to regular bi-
nary cellular automata, with two critical differences. Firstly, the local neigh-
bourhood constructed via an arbitrary wiring (usually random) [26]. Secondly,
the local update rule for each cell is also arbitrary (usually random with some
constraints) [26, 71].

Formally we have,

12
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Definition 5 Let A = (L;U;T") be a random boolean network where L [1 Z is a
set of cells, U =fh; : x; 2 L@ is the set of randomly constructed neighbourhoods
hy = fxy : x; 2 LA 8 2 [1;jLj]; (Pr(J =]j) = 15Lj)g with 8i;jhij = k, and
I =fg : x; 2 Lgis the set of local state transition functions g : f0;1g€ ! f0;1g.

Once the neighbourhoods h; and the state transition functions g have been
constructed they remain fixed and deterministic throughout the systems evolu-
tion. Though the definition could easily be extended to a n-ary alphabet, random
boolean networks were specifically developed to study genetic regulatory networks
from a theoretic biology point of view [26, 71, 73, 78]; That is, a gene is suppressed

or expressed; which is naturally binary.

2.1.2.3 Graph Cellular Automata

Regular cellular automata and random boolean networks can be further gener-
alised to cellular automata defined on any connected graph [33, 55]. These graph
cellular automata (also referred to as generalised automata networks [55] or cel-
lular automata on graphs [32, 33]) Building on the formalism of regular cellular
automata in Section 2.1.2, a graph cellular automaton is constructed by replacing

the regular lattice L for a connected graph G.

Definition 6 Let A = (G;X;U;T") define a graph cellular automaton where G =
(V;E) is a connected graph with vertices V [1 Z and edges E 11V 1V, 3 is a
finite set of symbols referred to as the alphabet, U = fh; : i 2 Vg is the set of
neighbourhoods hy =fj : (i;j) 2 E _ (j;i) 2 Eg, and ' =fg :i 2 Vg is the set

of local state transitions functions g : X" 1 3.

Note that Definition 6 is similar in many respects to Definition 1. The cells of
the automaton A are represented by the vertices of the graph G. The neighbour-
hoods h; 2 U consist of all cells connected via the set of edges E'. Definition 6
assumes G is a undirected graph, but this is not a requirement and may be easily
changed by re-defining h; =fj : (j;i) 2 Eg.

Typically a cell is considered connected to itself (i.e., 8i 2 V;9(i;i) 2 E), however this is
not a requirement.

13
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Table 2.1: Example of the Wolfram code naming convention for the elementary
cellular automaton Rule 110. Here | is the nth possible neighbourhood config-

uration, g is the local state transition function, s is the number of states.
n 000 001 010 011 100 101 110 111

a( () 0 1 1 1 0 1 1 0

s"g( o) 20000 2'O1 22001 23001 24000 25001 22001 27000

Cy=110=] 0 + 2 + 4 + 8 + 0+ 324 64+ 0

2.1.2.4 Other Definitions

A few other other constructs relating to cellular automata appear often in the
literature. These include common naming conventions, state types, and rule
types. The following definitions are presented: The Wolfram code, the quiescent
state, and totalistic/outer-totalistic rules.

A common naming convention in the form of a numerical code is applied
to cellular automata, this is often referred to the Wolfram code (after Stephan
Wolfram who first utilised such a scheme [62]). A cellular automaton’s Wolfram

code Cgyis generated from it’s local state transition function g,

Co= 89 n) (2.1)
n=0

where s = j3j, k = jUj, and , 2 ¥ represents the nth possible neighbourhood
configuration. An example of Equation (2.1) applied to a binary cellular au-
tomaton' is provided in Table 2.1. It is worth noting that the Wolfram code only
applies to regular cellular automata or graph cellular automata with homogeneous

state transition functions.
Typically a specific state is defined called the quiescent state. This state is
denoted as [ 2 ¥ and is defined as the state such that g({y; (115 () = [ [28].
Conceptually, the quiescent state is considered the “dead” state, and dead state

in a dead state remains dead.

INote that the result is simply the decimal representation of the binary number encoded
the outputs of g.

14
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Two special classes of cellular automata rules are of particular interest; namely
totalistic, and outer-totalistic rules [7, 32, 33, 62]. These are of interest because
results are independent of orientation. Rules from these classes can be represented
more simply than a lookup table which is the most general form of the local state
transition function'.

A output of a totalistic rule is only dependent on the sum of the non-quiescent
states within the cell’s local neighbourhood. That is, g = f (y), wherey : 3¢ ! Z
and f : Z! Y. The function y is given by

X
y(C'(hi)) = R(C'(x)) (2.2)
x2jhij
where R : X! Z is a function which maps states to numerical values, with the
constraint R(}) = 0.

Outer-totalistic rules (also called semi-totalistic rules [7]) can be expressed as
a function dependent on the sum of the states in a cell’s outer-neighbourhood
(i.e., the local neighbourhood excluding the cell itself) and the cell’s current state.
That is, g = f (y; [), where y is defined as in Equation (2.2), and f : Z01X 1 3.

The sequence of configurations generated by a cellular automaton’s evolution
forms a space-time pattern. This pattern is the object of interest in the study of
cellular automata dynamics. The space-time pattern is also useful when visual-

ising cellular automata behaviour.

2.2 Dynamical Characteristics of Cellular Au-

tomata

Cellular automata are capable of supporting a wide range of dynamical charac-
teristics [61, 62, 63]. Broadly, cellular automata fall into three dynamical classes:
ordered,chaotic, and complex [27, 28, 32, 76]. These are characterised by the
expected behaviour of a cellular automaton in the long time evolution.

Ordered cellular automata will tend to ultimately converge to a single fixed

configuration, akin to a point attractor in continuous dynamics. Chaotic cellular

1L ookup table representations can become unwieldy when the number of possible neigh-
bourhoods is large.
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automata are highly sensitive to initial configurations and the long time behaviour

"1 akin to a strange attractor in continuous

will typically be almost “random
dynamics. Complex cellular automata have unpredictable long time behaviours,
possibly converging to a single configuration or forming complex oscillatory cycles.
Complex cellular automata may even generate “life-like” gliders, supporting self-
replication.

In the early to mid-1980’s, Stephan Wolfram performed an extensive study
on the simplest class of cellular automata,called elementary cellular automata,
which are binary (i.e., ¥ = f0; 1g) 1-dimensional automata [61, 62, 63]. Wolfram
showed that, even with this minimalistic definition, cellular automata are capable
of supporting the full spectrum of dynamical classes. Wolfram characterised what
he observed into four qualitative dynamical classes [63]. Wolfram’s four classes

were originally presented as follows:

'] Class I: Evolution leads to a homogeneous (i.e., all cells are the same state)

configuration.
[0 Class II: Evolution leads to a set of simple separated or periodic structures.
[ Class 11I: Evolution leads to a chaotic pattern.

(1 Class IV: Evolution leads to complex localised patterns, sometimes long-

lived.

Examples are shown in Figure 2.1

In terms of the broad dynamical classes defined in the preceding paragraph,
Class I and Class II cellular automata are ordered, Class III cellular automata are
chaotic, and Class IV cellular automata are complex [76]. Wolfram’s classification
scheme has been adopted by many, however it suffers from being informal and
subjective [14]. As a result, others have attempted to define a more formal
classification [27, 28, 39, 41].

Wolfram and others theorised that Class IV cellular automata are capable of

universal computation, even for elementary cellular automata [28, 63]. That is,

1The long term behaviour is not actually random, but is still completely deterministic.
However, the information entropy of the space-time pattern will be close to 1
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Figure 2.1: Examples of Wolfram Classes.
(homogeneous), Class II (periodic), Class III (chaotic), Class IV (complex).
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Class IV cellular automata may be considered as computers in their own right,
capable of computing any finite computation. Wainwright had already proven
that the binary two-dimensional cellular automaton, Conway’s Game of Life [18]
(see Figure 2.2), to be Turing-complete (i.e., Capable of simulating any universal
Turing-Machine [56]) in the mid-1970’s [60]. Cook further validated Wolfram’s
theory by proving that the elementary cellular automaton, rule 110 (see Figure
2.2), to be Turing-complete [11, 12].

|

11T
Tt

Figure 2.2: Turing Complete Cellular Automata. The left image shows the time-
space pattern formed by Rule 110 given a simple 1D initial configuration. The
right image shows a single time-step of the 2-dimensional cellular automaton

Conway’s game of life.

A formally undecidable theorem has no finite formal proof to determine it’s
truth or falsehood. Godel’s Theorem famously showed that formal undecidabil-
ity is an inevitable consequence of mathematical completeness [19, 22]. In the
general case, the long time behaviour of a universal Turing machine is formally
undecidable, shown by Turing’s diagonal argument known as Halting Problem”.
The existence of Turing-complete cellular automata has profound implications for
what can be determined, either analytically or computationally, about their long

time evolution in general. It leads to the inevitable conclusion that the simplest

1The Halting Problem is eCectively the computational view of Godel's Theorem.
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simulation of a universal cellular automaton is the automaton itself [4, 11, 66, 69].
This is a property referred to by Wolfram as computational irreducibility [66]. As
a result of computational irreducibility in cellular automata, there does not exist

a general method to directly compute the dynamical class of a cellular automaton.

2.3 The Quantitative Analysis of Cellular Au-

tomata

As there is no general method to compute the dynamical class of any cellu-
lar automaton directly, in practice, various metrics based on either the form of
the local state transition function [28, 74], the global configuration transition
graph [26, 68, 72, 78], or analysis of the space-time pattern from a statistical me-
chanics point of view [32, 33, 61, 74]. These methods are not mutually exclusive,
and may even compliment each other. In this section, common methods from the

literature are discussed.

2.3.1 Rule Table Analysis

The most general representation of a cellular automaton’s local state transition
function is a look-up table [28, 71]. Analysis of the rule look-up table can be used
as a rough indicator of the cellular automaton’s behaviour. This approach has
the advantage of computational efficiency as the cellular automaton’s evolution
is never simulated.

The most famous of the rule table based methods is Langton’s [ +parameter [28].
The [Fparameter is defined as the probability that a cell transitions to a non-
quiescent state (as defined in Section 2.1.2.4). Using the formalism in Sections
2.1.2 t0 2.1.2.4, and given n possible entries in g that map to the quiescent state

[y, then
KN On

O KN

(2.3)

where k = jXj and N = jhjj.
Initial analysis of Equation (2.3) reveals that [1= 0:0 when n = kN indicating

that all possible state transitions map to [;; this represent maximal homogeneity.
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When all states are equally likely =1 [J %, which occurs when n = kN"7; this
represents maximal chaotic behaviour. Langton showed that cellular automata
with [ closer to the homogeneous extreme tend to be from Wolfram Classes 1
and II, whereas [ closer to the chaotic extreme tend to be from Wolfram Classes
IIT [28].

Langton conjectured that as [1is varied from [0 = 0:0 to (1= 1 [] % it will
eventually cross a critical point in which a phase transition occurs from order
to chaos. This phase transition is referred to as the edge of chaos; Langton
supposed that Wolfram class IV cellular automata would tend to occur at this
point. Langton’s experiments are supported by some other studies [35, 72] but
contested by others [34].

Another rule table method is known as Wuensche’s Z-parameter [74]. This
parameter is computed as a side effect of Wuensche’s reverse algorithm [78], which
is a method for directly solving the so-called Eden problem [3, 6, 24, 41, 49, 50].
The Eden problem seeks to resolve the question, for a given configuration [t
“Does there exist a pre-image (1" such that Tt = f (7171,

Whuensche’s reverse algorithm attempts to construct a pre-image by taking an
initial guess at a cells state, followed by deductions based on the rule look-up
table. The next cell is said to be found deterministically if only one possibility
exists, based on the cells determined (and assumed) to that point.

For an elementary cellular automaton Wuensche’s reverse algorithm proceeds
as follows. Assume the first K [ 1 cells in the pre-image are known pq;::; Pxo1,
then there are two entries in the rule look-up table which are potential pre-images
,say [y and [p, for the k=2-th cell in the original configurations. Let the lookup
table entry of [y and [, be denoted by ! 4 and ! , and let [k=; denote the state of
cell K=2 in the original configuration. If ! 1 =1, & k= then the previous k [J 1
states are not part of a valid pre-image. If 1 1 = !, = (= then both [} and [}
could be part of a valid pre-image and both need further processing. However
if 1 1 & !5 then one only them must be equal to [k= that is the k cell state is

uniquely and deterministically known.

The reader is referred to Appendix A for details on the Eden problem and some work on
the problem performed in early stages of this project.
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The Z-parameter is defined as the probability that the next unknown cell
state can be found deterministically. The range of the Z-parameter is Z 2 [0; 1].
Z = 0 indicates high convergence and order, and Z = 1 indicates low convergence
and chaos [74, 78]. Wuensche compares his Z-parameter against Langton’s [+
parameter and indicated that they are similar in nature [74], unfortunately he
does not provide an argument for the advantage of using the Z-parameter over
the [Fparameter. Wuensche discovered that the Edge of chaos tends to be around
Z 2 [0:5;0:75],that is, Wolfram Class IV cellular automata are expected to occur

in this interval.

2.3.2 Configuration Transition Graph Analysis

The configuration transition graph is a representation of the global dynamics of
a cellular automaton [62, 77], similar to a phase portrait from continuous dynam-
ics [78]. Each possible configuration of a given cellular automaton is represented
as a graph node,and each configuration transition is represented as a directed
edge [66, 68, 72].

For finite cellular automata, these graphs will always form attractor cycles,
which are cycles for which every connected configuration in the graph will con-
verge to. Leaf nodes represent configurations without a pre-image, also called
Garden of FEden configurations. The set of configurations which form a chain
from aleaf node to an attractor cycle are called transients.

Properties of configuration transition graphs can provide good indicators of
cellular automata behaviour. Useful properties include the mean attractor cycle
length, the number of cycles, the mean transient length, the number of leaf nodes,
and average node in-degree [26, 68, 72, 76].

The most significant problem with direct analysis of the configuration transi-
tion graph is it’s computational overhead. The number of nodes in the graph will
grow exponentially with the number of cells, making analysis of cellular automata
with large cell counts computationally intractable [77]. Of course an alternate
approach is to simply construct sub-sections of the graph based on a random

sampling.
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2.3.3 Statistical Mechanics

The study of cellular automata dynamics can be viewed from a statistical me-
chanics perspective. Statistical mechanics deals with the study of the macro-
scopic behaviour of a system in terms of is microscopic components based on the
probabilities of micro-states. A cellular automaton is considered as a statistical
ensemble of cells in which a stochastic process drives cell state changes [62].

The most fundamental concept here is that of entropy, which is defined as the
amount of disorder in the system. Entropy can also be considered as the amount
of unknown information about the systems state. For example, a Class I cellular
automaton will have minimal entropy as all information about its ultimate state
is known after very few time-steps.

Shannon’s information formula relates the entropy of a system to the proba-
bilities of each possible state the system can be in [43]. The Shannon entropy of

a cell X; is given by,

X1 0.0
S =0 plogs p (2.4)

j=0
where s = j¥j and pi([] ) is the probability that cell x; il% in state [}, that is, p| =
Pr(C'(xi) = [j). The average Shannon entropy S = Ni ::g 1S can be used to
distinguish stationary patterns from those that are chaotic or oscillatory [32, 33,
66]. This can be understood since a single state will dominate in any stationary
pattern which will yield S I 0; a chaotic pattern will tend to have near equal
probabilities for all states yielding maximal entropy S [ 1.

The micro-states of the system need not relate to a single cell’s state as it is in
Equation (2.4), sequences or blocks of cells may be of interest. Wolfram applied
such a method which he referred to as the spatial measure entropy [66],

1 X1 00
LY . P logs P (2.5)

SX(X) =

where pf is the probability of the j th possible spatial block of length X occurring,

given 8% possibilities. Wolfram also defined a temporal measure entropy,

 logs Py (2.6)
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where p} is the probability of the jth possible temporal sequence of length T.
By using spatial/temporal block configurations as the micro-states of the sys-
tem a more detailed picture of the dynamics of the system can be constructed.
This is due to correlations between cells being taken into account, as opposed to
completely independent of each other as in Equation (2.4).

Unfortunately the spatial measure entropy is difficult to define for graph cel-
lular automata, so more emphasis is placed on the temporal information. Marr

and Hiitt applied what they refer to as the word entropy [32, 33] which is given

by,

X i HiH

Wi=0  plogr p (2.7)

I=1
where pl is the probability of a contiguous sequence of length | (i.e., an I-word).
Note that Equation (2.7) is very similar to Equation (2.6) except sequences of any
length are considered and only contiguous sequences are of interest. The average

1 T i=No1

word entropy W = & .y W, can be plotted against the average Shannon

entropy to obtain a visualisation of a cellular automata rule space. Marr and
Hiitt show that this visualisation is roughly segmented into regions relating to
the Wolfram Classes [32].

Wuensche applies a measure he refers to as the input-entropy [71, 77, 78]. The
input entropy measure is based on the probabilities of the occurrences of local
neighbourhood configurations. Wuensche defines the input entropy | and time t

as
X1 ‘o

th logsk Wj
j=0

It =10 (2.8)
where 8i;k = jhjj, and th is the frequency of the j th possible local neighbourhood
configuration out of the possible s* at a given time t. Note that Wuensche’s
input entropy (Equation (2.8)) is effectively Wolfram’s spatial measure entropy
(Equation (2.5))with X = k.

By using summary statistics on the time series of the input entropy, Wuensche
was able to create a near-automatic classification scheme for cellular automata
which is in close agreement with Wolfram’s Qualitative Classes [74]. Class I and

Class II cellular automata will have a low input entropy mean and variance; Class
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I1I will have a high input entropy mean, but low input entropy entropy variance;

Class IV will tend to have a medium/high input entropy mean and variance [76].

2.4 Cellular Automata in Applications

The abstract nature of the study of cellular automata dynamics make cellular
automata a powerful tool for the study of real world complex systems, in with-
out needing to resort to traditional continuous dynamical systems using partial
differential equations [64, 70]. Domains of applications include biology, physics,
engineering, and computer science [4]

Theoretical biology has many applications for cellular automata and related
discrete dynamical systems. This is largely due to common characteristics shared
by real biology systems and cellular automata, such as global behaviour defined
through local interacting structures. From the very beginning of the field, cel-
lular automata have been studied as abstractions of living systems, or Artificial
Life [29]. In this context cellular automata have been used to investigate phe-
nomena such as self-reproduction [1, 20, 59]self-organisation [25, 62, 75], and
adaptation via mutation [8, 26, 28, 35] in a general form. Cellular automata have
also been applied to model real biological cell interactions. Examples include
models of the tumor-immune system interactions [30], and of genetic regulatory
networks [26, 73].

In physics there are also no shortage of applications. Some cellular automata
can mimic a continuum system [67] resulting in direct applications for compu-
tational thermodynamics and hydrodynamics [40]. Cellular automata models of
phenomena such as complex turbulent fluid flows [65] and flows though porous
media with results of the same accuracy as obtain through discretisations of the
Navier-Stokes equations [47]. In a theoretical setting, the discovery of compu-
tationally irreducible discrete dynamical systems leads to the conclusion that
many unsolved problems of theoretical physics may in-fact be computationally
irreducible [66].

Other physical sciences are not without cellular automata applications. Growth

of crystalline structures such as snowflakes can be modelled with relative ease with
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cellular automata [65]. Cellular automata are used in the study of chemical pro-
cesses such as reaction-diffusion [1]. Geomorphological models of landslides with
very accurate prediction capabilities [9]. Even civil engineering applications such
as storm water network design have been successfully applied [2].

The Turing-completeness of cellular automata makes them of particular in-
terest to computer science. Cellular automata have many useful computational
properties that a traditional Von Neumann architecture does not, such as decen-
tralised processing, massive parallelism, fault tolerance, and simplicity [5, 69].
Computer architectures have certainly been influenced by cellular automata [4].
An example of a special purpose computer architecture was the CAM (Cellu-
lar Automata Machine) series architecture developed at the MIT Laboratory for
Computer Science [31, 53, 54]; this architecture was designed specifically for sim-
ulation of cellular automata and was thousands of times faster that Von Neumann
based CPUs of the day [53]. Other Cellular automata based architectures have
also been proposed [10], and implemented for special tasks [58]. A cellular au-
tomata processor has even been realised in an organic mono-layer [5], a form of
processor which could revolutionise computer systems. Other applications from
computer science include image processing [38], encryption [64, 76], and inte-

grated circuit manufacturing [45].

2.5 Geometric Topology

Topology is a field of mathematics which studies the properties of topological
spaces which are invariant under certain transformations [44]. Geometry topol-
ogy is a subfield of topology in which topological spaces define n-dimensional
manifolds. Essentially my project involves comparing the dynamics of cellular
automata defined of different topological classes of 2-dimensional manifolds em-
bedded in 3-dimensional space (i.e., surfaces).

Informally, a topological space can be defined as a set of “points” X, and
a topology on X. A topology on X is a set [Jof subsets of X. The elements

of [Jdefine the “closeness” of elements in X. A topological space need not be
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“geometric”, but for my project the set X is always a set of points and [ is
effectively the set of neighbourhoods".

Two properties of a topological space that are straight forward to describe are
connectedness and genus. A topological space is connected if a path can be drawn
from any point to any point. Geometrically this means a connected topology is

a single piece, as shown in Figure 2.3.

00 °©

Figure 2.3: Example of topological connectedness. The “eight-like” object on

the left is connected, however the object on the right consisting of a torus and a

sphere is not connected

The genus of a topological space is the maximum number of times you can
remove the points included in a closed curve from X and result in a connected
topological space. A geometric example is shown in Figure 2.4. For closed surfaces
the genus is equal to the number of “holes” it has. A sphere is a genus 0 surface,

and a torus is a genus 1 surface.

Figure 2.4: Topological genera. From the left: Genus 0 (sphere), Genus 1 (torus),
Genus 2 (double torus)

Disreally the set of neighbourhoods, neighbourhoods of neighbourhoods, etc...

26
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Two topological spaces are equivalent if the first may be continuously deformed
into the second. Two surfaces with the same genus are topologically equivalent,
even though geometrically they may differ. The classic example is the torus and

a coffee mug, both have genus 1.

2.6 Critical Phenomena in Cellular Automata

My study centers around finding critical phenomena caused by variations in topol-
ogy of the kind described in Section 2.5. Critical phenomena denotes cases in
which a subtle change in the definition of a cellular automaton causes a phase tran-
sition (e.g., a change in the Wolfram Class) in it’s dynamics [16]. Interestingly, it
seems that the idea of making variations in a cellular automatons definition this
way receives very little attention in the literature, despite some studies indicating
such changes can cause significant behavioural changes [16, 32, 33, 42, 55]. In
terms of direct application, such results are useful in the study of system robust-
ness [16].

Marr and Hiitt performed a detailed quantitative study on the effect of changes
in graph topology on 1-dimensional totalistic and outer-totalistic binary graph
cellular automata rules [32, 33]. The types of topological perturbations they
applied were Erdos-Rényi random graphs, delta-distributed random graphs, and
scale-free graphs. Marr and Hiitt did identify critical phenomena under these
changes [32] and found that the number of complex rules (i.e., Wolfram Class IV)
tends to decrease as the mean degree distribution increases [33]. Marr and Hiitt
proposed that their techniques could be used as probes for studying dynamical
constraints imposed by topology in real biological metabolic networks [33].

Tomassini evaluated several graph topologies (i.e., small-world and scale-free)
based on a cellular automaton’s effectiveness in performing computational tasks
(i.e., the density problem and the synchronisation problem) [55]. Tomassini con-
cluded that by relating the classical topological regularity constraint, improved
problem solving performance and robustness could be achieved.

Fates studied the behaviour of cellular automata under random topological
perturbations from a fault-tolerance perspective [16]. Fates showed that topologi-

cal perturbations can cause behavioural degradations. Minor topological changes
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to Conway’s game of life cause the “life-like” dynamics to completely degrade
to a simple static regular pattern. Thus understanding the topological effect on
dynamics is critical in the study of such a systems robustness.

The studies of Marr and Hiitt [32, 33], Tomassini [55], and Fates [16] are
based on topological variations that can alter local neighbourhoods. Ventrella
performed an interesting qualitative study on subtle dynamical differences in-
duced by replacing a regular lattice with periodic boundaries with a geodesic
grid [57], thus preserving local neighbourhoods and dynamics. For a rule similar
to Conway’s game of life, Ventrella observed phenomena in the geodesic grid that
cannot occur in a regular lattice. Examples include perpendicular gliders crossing
paths twice per orbit, and gliders changing direction without collision. Ventrella
designed a novel XOR gate exploiting these phenomena and poses the question
“Are there unique spherical machines?”.

In my study, the quantitative techniques of Marr and Hiitt [32, 33], Wol-
fram [62, 63] and Wuensche [74, 76] are applied to study topological effects of the
type studied by Ventrella [57]. These topological changes are based on changing
the genus of the 2-manifold (as discussed in Section 2.5) on which the cellular
automaton evolves. The research questions presented in Section 1.3 have been
constructed in order to gain insight into the question of the existed of machines

that are unique to a specific genus of 2-manifolds.

2.7 Summary

This chapter has presented a review of the literature that forms a fundamental
background to my study. A general overview of the theory of cellular automata
has been presented, including the formal mathematical definition, computational
properties, and the implications of these properties. The literature shows that
by applying variations to the traditional definition of cellular automata, critical
phenomena can be observed. To date, no quantitative study of such phenomena
under topological variations which preserve local neighbourhood (and hence local
dynamics) has been performed. My study fills this gap in the literature by inves-
tigating the statistical mechanics of cellular automata defined across topological

spaces of differing genera.
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Chapter 3

Methods

As presented in Section 2.6, quantitative studies shown that certain topological
perturbations can cause critical phenomena to occur in graph cellular automata
dynamics [16, 32, 33, 55]. However, all of these cases of critical phenomena have
been observed using topological perturbations in which either homogeneity, size,
and locality of neighbourhoods are not preserved. Ventrella’s study [57] looked at
the case in which homogeneity, size, and locality of neighbourhoods are preserved
but the topology overall is spherical (genus 0) rather than toroidal (genus 1).
As a result of qualitative observations, Ventrella proposes that there might exist
machines unique to a spherical topology. This would suggest that a more intimate
relationship exists between topology and dynamics than one can deduce from
previously observed critical phenomena which can be largely explained due the
changes in local dynamics.

A broad quantitative, experimental study was performed on the statistical me-
chanics of graph cellular automata under different topologies that largely preserve
homogeneity, size, and locality of the cell’s local neighbourhoods. Experiments
have been designed to search out answers to the research question relating to
the differences in the distribution of dynamical classes within rule space between
topologies. This Chapter presents the details of the methods applied throughout
this study.
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3.1 Overview

The goal of any experimental study is to investigate if there is sufficient evidence
to reject out hypothesis, that is the null hypothesis Hg. In this Section, Hg will
be constructed and the major steps in the research method are summarised. The
details of each step will be presented in Sections 3.4, 3.5, 3.6.1,and 3.7.

Let AN denote a graph cellular automaton with N cells and a graph G that is
topologically equivalent to a connected 2-manifold of genus n, and let R, n be the
set_of all possible rules. If the distribution of rule dynamical classes is denoted by
D Run , then it would seem appropriate to define the null hypothesis Ho such

h
that O O O O 0 0

Ho:D Ryy =D Ryn =:m=D Ryy : (3.1)

N

Note that the last term in Equation (3.1) represents a fully connected graph
(i.e., all cells are connected to all others). A fully connected graph forces the
neighbourhood size to change, furthermore it has already been established that
complex and chaotic totalistic rules cannot exist on a fully connected graph [32].
Since topologies that preserve local dynamics are of interest in this study, Hgq is
further refined to be

0 U U H U O
Ho:D RAE =D RAI1\I =:m=D RAQ (3.2)

where K << N. Due to computational constraints K = 2 for the purposes of my
project.

The overall experimental method consisted of sampling simulations of every
rule in the rule space on genus 0, genus 1 , and genus 2 topologies (The techniques
used in constructing the graphs of these topologies is given in Section 3.4). For
every simulation entropy data was collected (See Section 2.3.3). Since there do
not exist exact methods to classify a rule according to Wolfram’s classification
scheme [27, 28] a combination of the method applied by Wuensche [74] and the
method applied by MDarr arid Hiitt [32] has been used to approximate the dynam-
ical distributions D Ran . Details of how these experiments we performed is

given in Section 3.6.1.
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In the literature, its seems rare for authors to justify their sample sizes when
collecting entropy information [26, 28, 32, 32, 74, 76]. However, since it is l“quuire—j
ment of this project that the entropy samples sufficiently approximate D Ry n
it is appropriate that some testing is performed. A global entropy error analysis
was performed for small cellular automata to try an extract an appropriate sam-
ple size as a percentage of size of the configuration space. Details of the method
applied for this analysis is present in Section 3.5.

Since four difference entropy measures are collected per simulation, the dis-
tributions D Ryn  are 4-dimensional. Very few non-parametric techniques for
comparison of multivariate empirical continuous distributions exist [15, 36, 37].
The method that has been applied is based on the E-statistic originally formu-
lated by Székely and Rizzo [51, 52], which is a non-parametric test based on the
Euclidean distance between sample elements. The rationale behind selecting this

technique and the details of its implementation are provided in Section 3.7.

3.2 Compute Resources

A detailed study of cellular automata dynamics requires more computational
power than a standard desktop computing environment. This is largely due to
the inherently parallel formulation of cellular automata being inefficient on a
traditional Von Neumann based processor. Special purpose compute resources
such as QUT’s high performance computing facility are able to exploit more

parallelism, thus enabling many thousands of simulations to be performed.

3.2.1 Hardware

Most of my experiments were executed on the QUT’s compute cluster. This
compute cluster is administered by the high performance computing and research
support group’ at QUT.

The current high performance computing platform? is a Silicon Graphics In-
ternational Corp. (SGI)® Altix XE Computational Cluster with the following

1See http:/ / www.itservices.qut.edu.au/ researchteaching/ hpc.
2Current at the time of writing.
3See http:/ / www.sgi.com.
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specification:
[J 128 compute nodes.
1192400 64-bit Intel Xeon Cores.
1 50:8 TeraFlop theoretical performance using double precision.
[115;264 GigaBytes of main memory.
) Infini-Band interconnect.

[1 SUSE Linux Operating System.

3.2.2 Software

Two software packages were heavily utilised in my project; they are GCALab and
MATLABR . GCALab' is an artifact of my project and is a custom appilcation for
simluation and analysis of cellular automata. MATLAB® is a numerical software

package and language developed by MathWorks, Inc.?.

3.2.2.1 The Graph Cellular Automata Laboratory

The Graph Cellular Automata LABoratory (GCALab) is a special purpose, cus-
tom application designed for construction, simulation, visualisation and analysis
of cellular automata defined on graphs (often graphically represented as surfaces).
GCALab implements a interactive command line coupled with a parallel back-
end compute engine. A simple batch mode is also available for use with compute
clusters.

GCALab started out it’s life as several small independent C programs using
a common cellular automata library that was developed in early stages of this
project (called libGCA, see Appendix B). Eventually, small programs were re-
worked into a flexible and extensible framework system that could support rapid
additions of new features and algorithms; the result was GCALab, a full descrip-

tion of it’s design and functionality is provided in Appendix B.

LAvailable on GitHub https:// github.com/ davidwarne/ GCALab.
°See http:/ / www.mat hworks.com.au.
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GCALab has been heavily utilised as the cellular automata simulation engine,
and analysis tool in my project. Computations such as exact global entropy
calculations, Garden-of-Eden density, average attractor cycle length, and sampled
Shannon entropy were all done using GCALab. GCALab combined with a shell

scripting environment enabled scaling over 800 cores on QUT’s HPC system.

3.2.2.2 MATLAB?®

MATLABR is a specialised software environment designed for numerical compu-
tation, data analysis, and visualisation. The MATLAB® interactive environment
and scripting language provides a powerful and flexible tool for rapid algorithm
prototyping, data analysis, and data exploration. MATLAB® is use widely in
fields of science and engineering.

The main MATLAB® program/runtime implements and interpreter for the
MATLAB® language. The MATLAB® language performs many linear algebra
operations natively' and efficiently. Over the years many special purpose, do-
main specific toolboxes have been produced as “add-on” libraries implementing
functions from image processing, optimisation, statistics, and many other fields.

In early stages of this project, MATLAB® was used as a prototyping environ-
ment to test calculations prior to implementing functionality into GCALab (see
Section 3.2.2.1 and Appendix B). Whilst all of the data collection from cellular
automata simulation was done using GCALab, some of the final analysis of the
results was performed in MATLAB® due to is rich set of data analysis functions.
Many of the plots and data visualisations shown in this thesis have also been
generated in MATLAB® .

3.3 Graph Cellular Automata Construction

My project required a cellular automaton formalism that would allow for consis-
tent definition across 2-manifolds of any genera. Since graph cellular automata

(Section 2.1.2.3) are the most general definition, this is the formalism that was

Hence the origin of the name MATLAB® from MATrix LABoratory.
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implemented in the 1ibGCA code library (See Appendix B). The graphs them-
selves are derived from triangular surface meshes generated using the techniques
described in Section 3.4. Due to the method of defining G, this specific type of
graph cellular automata is referred to as triangular graph cellular automata.

For a cellular automaton defined on a triangular tessellation, there are several
possible neighbourhood definitions that could be applied to construct U. Two
neighbourhoods definitions commonly used for rectangular tessellations are the
Von Neumann neighbourhood and the Moore neighbourhood. The triangular
tessellation analogs of these neighbour types are shown in Figure 3.1. The Von
Neumann neighbourhood considers two cells to be neighbours if they share an

edge, whereas the Moore neighbourhood considers cells that share a vertex to be

NCNLNS N NS NS

neighbours.

Figure 3.1: Neighbourhood types in the triangular tessellation. Left: Von Neu-
mann neighbourhood. Right: Moore neighbourhood.

It seems that no such quantitative study looking at neighbourhood preserv-
ing topological changes exists to date. As a result, the main focus of my study
has been the simplest possible 2-dimensional cellular automata; binary triangular
graph cellular automata. More formally that is, graph cellular automata of the
form Aﬁ = fGy; X; Uyn; I'g, where Gy, is a graph topologically equivalent to a
triangular mesh of genus n, ¥ = f0; 1g, Uyn is the set of Von Neumann neigh-
bourhoods, and I' contains a single local state transition function g : ¥4 ! 3.

This simplest case has the smallest possible rule space, thus allowing a more
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in-depth study. However, for the sake of interest, a subset of the rule space
has been investigated for binary cellular automata using the triangular Moore
neighbourhood (i.e., “life”-rules [7]).

The local state transition function g is implemented using a look-up ta-
ble (LUT). Each LUT lookup index | is constructed from the states of the
cells in the neighbourhood. For the Von Neumann neighbourhood that is | =
(C(X0); C(x1); C(x2); C(x3)) where X is the centre cell and the X4,X2, and X3 are
the neighbours labelled arbitrarily. Thus there are 24 = 16 possible neighbour-
hood configurations and 2'® = 65; 536 possible rules. For the Moore neighbour-
hood however, there are 2" = 8192 possible neighbourhood configurations and
28192 possible rules, hence why only a small subset of this rule space has been
explored .

Though the main research questions applied to the rule space as a whole, it
is also of interest to know if certain subclasses of rules are affected more/less
that then entire rule space. The specific subclasses of most interest are totalistic
and outer-totalistic rules. This is largely due to the fact that relative orientation
of adjacent local neighbours will not effect dynamics. For the Von Neumann

neighbourhood, the Wolfram codes for totalistic rules are of the form
Cg = 32; 768x4 + 26; 752X3 + 5; 736X2 + 278X1 + Xo (3.3)

where x; 2 f0;1g;i = 0;1;::;;4, each constant is the sum of the neighbourhoods
satisfying the respective total i set bits. Similarly the Wolfram code for outer-

totalistic rules are of the form

Cqy = 32;768%a,1 + 16; 384Xa,0 + 10; 368X .1

3.4
+ 5; 184X2.0 + 552X 1.1 + 276X 1.0 + 2X0;1 + Xo:0 ( )

where Xj; 2 f0;1g;i = 0;::3;) = 0;1, each constant is the sum of the neighbour-
hoods with the centre cell of j and the outer total of i.

For the Moore neighbourhood, a special class of outer-totalistic rules were
chosen for study. These rules are referred to as “life”-rules and are denoted by

E/EnF\Fy. This particular class was discovered by Carter Bays and are defined as

Notethat 2812 [1 102%¢; thereis an estimated 10%° hydrogen atomsin the universe. Good
luck exhaustively simulating that rule space!
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follows [7]: The pair E|Ey, is the environment rule which give the lower and upper
bounds for the number of neighbouring live cells required for a currently live cell
to remain alive; The pair F|Fy, is the fertility rule which give the lower and upper
bounds for the number of neighbouring live cells required for a currently dead
cell to come to life.

“Life”-rules are of interest since there are several known complex “life”-rules.
Examples include rule 4644, 1868, and 3445 in the triangular tessellation [7]
and the famous rule 2333 in the rectangular tessellation (i.e., Conway’s game of
life [60]). How these complex rules (and others of similar construction) behave
under topological changes the preserve local neighbourhoods could provide insight

into the interaction between dynamical complexity and structure.

3.4 Topology Generation

A fundamental component of this project was the construction of graphs which
are topologically equivalent to 2-manifolds of a given genus. As discussed in
Section 3.1, the scope of the project has been limited to genus 0, genus 1, and
genus 2 topologies. This Section describes the method used to construct these
graphs.

The method involves the construction of triangular surface meshes of the
required topologies, the equivalent graphs are then extracted by setting mesh
faces to graph nodes (the connectivity depends on the neighbourhood type used).
The constraining factor in the mesh construction was the need to be able to build
meshes of differing genera but with the same number of faces. This proved to
be non-trivial, and in the end only genus 0 and genus 1 could be built with an
identical number of faces; for genus 2 there is a difference of around 5%. For each
topology, a base mesh with a minimum number of cells is constructed; larger
meshes are then constructed via sub-division of the faces of the base mesh. For
both the genus 0 and genus 1 topologies, the ideal base mesh was the Platonic
solid the Icosahedron. The Icosahedron was selected partly due to it’s use by
Ventrella in construction of a geodesic dome (i.e., a genus 0 topology) [57], but it

was mainly selected due to its property of being easy to remap to a torus. This
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property is shown if Figure 3.2, the triangle strip that builds the icosahedron can

be folded in orthogonal directions to build a flat torus.

Figure 3.2: Remapping the triangular strip of the icosahedron to a genus 1 mesh.

The base mesh of the genus 2 topology (double torus) was a little more in-
volved. The starting point was two genus 1 meshes, then two “sections” of each
were removed leaving two “letter-C” looking objects. These two objects were
then closed to form two tighter genus 1 meshes, which were then fused together

to form the double torus. The method is shown in Figure 3.3.

— K .
- -
‘_
-~ -

Figure 3.3: Construction of simple genus 2 mesh.

Once base meshes were constructed, larger meshes (and hence larger cellular
automata) could be constructed via subdivision. A single subdivision consisted
of taking a face and constructing a midpoint for each edge, denoted by m;. These
m; can be connected to form a new triangle which divides the original face evenly
into four new faces (See Figure 3.4).

The subdivision processes can then be applied iteratively to increase the mesh

resolution (See Algorithm 1). This approach is both intuitive and elegant in
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Figure 3.4: Mesh Subdivision.

terms of coding but it unfortunately has the side effect of producing duplicate
vertices (consider two adjacent faces both applying the method). In the use case
of this project, the overhead of merging duplicated vertices is worth the reduced
development time of this method, as the mesh size is always relatively small thus

mesh construction performance is dwarfed by the runtime of the simulations.

Algorithm 1 Mesh Subdivision
m  Creat eMesh(genus)
while : (m:numF aces = selectedResolution) do
m  Subdivide(m)
m  MergeDuplicat es(m)

end while

The topology mesh generation technique described in this Section has been
implemented as a part of the libMesh C library, which is utilised by the 1ibGCA
C library (See Appendix B). Examples of typical output is shown in Figure 3.5;
note that geometrically these meshes do not look “smooth” but this not a problem

as the actual geometry is essentially discarded’.

LExcept when GCALab isrun in graphics mode.
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Figure 3.5: Outputs of libMesh topology generation function.

3.5 Error Analysis of Entropy Measures

In the literature, justifications for sample sizes for entropy calculations are rarely
provided [28, 32, 33, 74]. In ordeﬁ to h&we confidence that the sampled entropy
values sufficiently approximate D Ry some analysis on the appropriate sample
size was necessary. This analysis involved computation of the exact global entropy
and comparing approximation errors as a function of sample size (i.e., the relative

sample size compared to the entire configuration space).

3.5.1 Computing the Exact Global Entropy

Let the global entropy of cell X; be defined to be the Shannon entropy given in
Equation (2.4) with an subtly different method of computing the probabilities of
the “micro-states”. In the case of global entropy, the pJ' measure the probability
that cell X; is in state [ over all possible complete transient evolution of A. Let
a complete transient evolution be defined to be one with a Garden-of-Eden initial
configuration and terminating at the start of an attractor cycle (i.e., an evolution
with traverses a path from leaf to cycle in the configuration transition graph),
as shown in Figure 3.6. This particular entropy measure was defined in order to
maximise the error caused by small sample sizes.

By traversing every complete transient evolution of A the exact frequency
of every configuration can be accumulated without unnecessary repetition. To
compute the global entropy of A exactly, every Garden-of-Eden configuration
is required to be known. An efficient algorithm (i.e., best case in Q(n), worst

case in O(n3), and average case in ©(n?)) for the detection of Garden-of-Eden
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Complete transient evolution

~ .
_ Garden-of-Eden
= - Configurations

Figure 3.6: A complete transient evolution.

configurations was developed in order to perform the global entropy calculation
(See Appendix A). Probabilities were calculated exactly by counting the state
frequencies of each cell over every possible complete transient evolution of A.
Even with an efficient method of determining Garden-of-Eden configurations,
the total global entropy of A is computationally intractable for large cell counts
as every configuration need to be tested (i.e., complexity class ©(2")). Through
the utilisation of QUT’s HPC cluster, it was possible to compute the exact global

entropy of every elementary cellular automaton for cell counts n 2 f8; 16; 32g.

3.5.2 Computing Sample Global Entropy

Having computed the exact global entropies for small elementary cellular au-
tomata, the next step was to identify an approximation error for different sample
sizes. Approximations were computed by a random selection of N initial condi-
tions (i.e., completely ignoring the Garden-of-Eden test) and evolving the cellular
automaton to the start of an attractor cycle. Cell state frequencies were collected
over all N samples to approximate the exact probabilities as calculated in Sec-
tion 3.5.1.
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Approximations were computed for every elementary cellular automaton for
samples sizes ranging from [J 0:000006% to [ 25% of the total configuration
space size. Results from these experiments provided a guide toward selection of
sample sizes and cellular automaton cell counts used for the approximation of
D (Ra ) computed according to the methods described in Section 3.6. The details

of the error analysis results are presented in Section 4.1.

3.6 Computation of Dynamical Distributions

l 0 o 0 l
Approximations for the dynamical distributions D RAy ,D RAq: ,and D RAQ

were computed by repeated simulation of cellular automata sampled from the rule
spaces RAg 7RA’1“ , and R, y respectively. These approximate dynamical distribu-
tions essentially represent a global view of all cellular automata dynamical possi-
bilities for each topological genus, which are compared using statistical methods
(See Section 3.7). In this Section, the details of the method of simulation, the

types simulations, and the derivation of the dynamical distributions is presented.

3.6.1 Classification of Rule Space

Combinations of entropy metrics (Discussed in Section 2.3.3) provide an excellent
method for quantifying a cellular automaton’s dynamical class [28, 32, 62, 63,
74]. Though exact Wolfram class' classification is not directly computable, a
rough classification of the rule space is possible. Three particularly useful entropy
metrics for the purposes of automatic rule space classification are the so-called
Shannon entropy, Word entropy, and Input entropy given in Equations (2.4),(2.7),
and (2.8) (All from Section 2.3.3) respectively.

The Shannon and Word entropies (averaged over all cells) were applied by
Marr and Hiitt for the classification of rule space in their study on the effect of
random graph topology changes have on the rule space of binary graph cellular
automata [32, 33]. By plotting the average Shannon and Word entropies against

each other, a visualisation of the rule base can be produced. Marr and Hiitt

HIf there is such a thing.

41

0



3. METHODS

identified distinct regions within this visualisation roughly match the Wolfram

classes.

0.14r T T T T T T T T T

Figure 3.7: Rough classification of rule space using the average Shannon S- and
Word W, entropies.

These rough regions are shown in Figure 3.7. It should be noted that exact
boundaries between these regions do not exist, instead there is a smooth transition
between regions. Furthermore these regions really represent the most common
dynamical class in that region (e.g., A Class IV cellular automaton may exist in
the region labelled Class III).

Whuensche applied a similar rule space classification technique, but he only
applied the Input entropy [74]. Wuensche visualises the rule space by plotting
the average Input entropy against the varience of the Input entropy. Regions

analogous to the Wolfram classes using the Input entropy are shown in Figure 3.8.
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3.6 Computation of Dynamical Distributions

The Input entropy method is extremely good at locating cellular automata with

complex dynamics (i.e., Class IV).

025

0z

015

Figure 3.8: Rough classification of rule space using the mean |- and variance | ;
of the Input entropy.

Since both these techniques provide a reasonable method to quantify the dy-
namical distribution of a given rule space, it seemed logical to take a combination
of the two. For every cellular automaton simulation the average Shannon S,
Word Wp, and Input | ; entropies and the variance of the Input | entropy were
computed. This results in a 4-dimensional summary of the dynamical character-
isation of every rule in the rule-space. Thoughout this thesis such a summary is
referred to as the dynamical distribution of a rule-space, as it roughly indicated

the frequencies of the Wolfram classes.
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3.6.2 Other Metrics

Look-up table analysis and configuration graph analysis (as discussed in Sec-
tions 2.3.1 and 2.3.2) also provide dynamical information comparable across
topologies. For each entropy simulation run, look-up table parameters and con-
figuration graph properties were computed. These quantities were collected to
complement the findings of the statistical analysis of dynamical distribution com-
parison, and to reinforce findings. Rigorous statistical tests were not applied to
these quantities.

The look-up table parameters applied were Langton’s [+parameter [28] and
Wuensche’s Z-parameter [74]. The [Fparameter is trivial to compute, since it
utilises the cellular automaton’s look-up table only. Furthermore, since the look-
up table does not change across topologies which preserve local neighbourhoods,
then the [Fparameter of a particular rule will remain constant. The Z-parameter,
however, does take the automaton’s topology into account, so minor changes do
occur. The usage of Jand Z are typically used as a rough classification method,
so finding critical phenomena across topologies may have implications for their
applicability to all topologies.

Configuration transition graph properties are extremely computationally ex-
pensive to compute exactly. As a result approximations were based on the
same samples as that of the entropy computations. Properties such as the G-
density [76], mean cycle length, and mean transient [26, 68, 74] were sampled.
These properties were collected to compare with results of the entropy compar-
isons in the hope that it may provide more insight (despite the limited accuracy

of these properties).

3.6.3 Sampling Method

Not every single cellular automaton in a given rule space need be sampled to
get an exact picture of the dynamical distribution. There are many equivalence
classes within a rule space which can be exploited. By exploiting equivalences
the number of rules is effectively halved.

The most significant equivalence is that of “bit-flip” equivalence. An au-

tomaton with a quiescent state [y = 0 will be dynamically identical to another
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automaton with [ = 1 in which the rule code is a “bit-flip” and reverse order of
the first. For example rule 110 is equivalent to rule 137 in this respect. By only
simulating automata with a [; = 0, this can be done by selecting only rules with
even Wolfram codes.

In order to get as accurate a representation of dynamical distributions as
possible, as much of rule space as was computationally feasible was sampled. For
the Von Neumann neighbourhood case effectively every rule could be represented
(as there is only 2' of them), however, only a very small portion rule space induce
by the Moore neighbourhood could be sampled. In this case only a special case
of outer-totalistic rules, so-called “life” rules [7], were sampled (albeit completely,
as there is only 8484 of them).

For each sampled cellular automaton around 100;000 entropy samples were
taken based on the results of experiments to determine error in approximate
entropies (See Section 4.1.2). Each entropy sample consists of a random initial
condition followed by a simulation. Entropy measures from each simulation run
were averaged to get a single 4-tuple representing the dynamics of that rule.
Every simulation was repeated for genus 0,1, and 2 topologies.

To ensure stable entropy measurements, every simulation executes a “lead-in”
period (i.e., a number of initial time-steps which do not contribute to the entropy
calculations). This period was equal to half the total number of time-steps that
contribute to the entropy calculations. For example, to compute entropies over
2000 time-steps, the simulation will execute 3000 time-steps, discarding the first
1000.

3.6.4 Simulation Cases

Several simulation cases, that is a rule-type/neighbourhood-type pair, were in-
vestigated. In each simulation case, samples as described in Section 3.6.3 were
take to compute a dynamical distribution for that case. Some cases are subsets
(and hence so are there dynamical distributions) of each other whereas others are
distinct.

The for the Von Neumann neighbourhood the entire rule space could be cov-

ered, this represents one large simulation case (named VN_ALL). Here a complete
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Table 3.1: Simulation Cases.

Simulation case Cells Sampled rules Samples/Rule Time-steps/Sample
VN_ALL_80 80 32;768 100; 000 3000
VN_TOT_80 80 32 100; 000 3000

VN_OUTTOT_80 80 256 100; 000 3000
VN_ALL_1280 1280 32;768 1;000 5000
VN_TOT_1280 1280 32 1; 000 5000

VN_OUTTOT_1280 | 1280 256 1;000 5000
M_LIFE_1280 1280 8484 1; 000 5000

global view of the dynamical distributions are calculated. The VN_ALL simula-
tion case is of the most use for testing the most general form of the null hypothesis
in Equation (3.2).

Von Neumann neighbourhood simulation cases which are subsets of the VN_ALL
case are the totalistic rules (named VN_TOT) and the outer-totalistic rules (named
VN_OUTTOT). Both these simulation cases are of interest as these rule do not
suffer from orientation problems (which could have an effect on results), and there
applicability to applications is wider. Comparing the effects of topology on these
classes separately proves to yield some interesting (and rather surprising results,
see 4.2).

For the Moore neighbourhood only the one simulation case was taken, that of
“life” rules 7] (named M_LIFE). This case was taken specifically to compare with
the outer-totalistic case on the Von Neumann neighbourhood, VN_OUTTOT.
By making this comparison, hints as to how the topological effect changes with

neighbour type can at least be speculated.

A summary of all the simulation cases, and their respective cell numbers and
sample numbers are given in Table 3.1. Note that the sample sizes are small for
larger cell counts n = 1280. This is in part due to computational constraints and
due to the fact that trillions of samples would be require to even get close the

percentage of configuration space covered for n = 80.
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3.7 Comparison of Dynamical Distributions

Comparing empirical data distributions against a known statistical distribution is
a routine task in inferential statistics. However, comparing two empirical distri-
butions for equality (called the K -sample test) without assuming any underlying
distribution is more complex. Tests that do not require a known statistical distri-
bution are called distribution-free. To test for evidence against the null hypothesis

(Equation (3.2)), a multivariate distribution-free K -sample test is required.

3.7.1 Equality tests for Empirical Distributions

Univariate cases of the K-sample test are traditionally solved using distribution-
free methods such as the Kolmogorov-Smirnov test [17, 46]. Unfortunately, the
Kolmogorov-Smirnov test does not generalise directly to the multivariate case
(due to the non-uniqueness of joint cumulative probability density function def-
initions). Some studies have attempted to find algorithmic approximations to a
multivariate Kolmogorov-Smirnov test [15, 36].

In more recent years, distribution-free tests have been developed based on the
Euclidean distances between data points. Examples of such tests are Rosenbaum’s
cross-match test [37] and Székely and Rizzo’s E-statistic [51, 52]. For the purposes
of this project, the method of Székeley and Rizzo was selected due to the existence

of limit theorems pertaining to the error in the method [51].

3.7.2 The E-statistic

The E-statistic is a test statistic for testing the equality of K multivariate sample
distributions [51]. The E-statistic is based on the Euclidean distance between
sample points.

Let X and Y be random variables in R of unknown distributions Dx and

Dy. Given two random samples X1; ::I; Xn,, and Y1;:5; Y, of X and Y then the
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two-sample E-statistic eX;Y) is given by

ni{No 2 X1 Xz

En =eX)Y) = jixi Dy
Mz Mz oy ! (3.5)
XX L1 X2 X ) '
D? X L xg)) O 2 Y Uyl
1

i=1 =1 2 =1 j=1

where n = ny + ny. Note that E,, = 0 if the two samples are identical.

For the K -sample test consider the random samples X 4; :::; Xk with ny = jXjj.
The two-sample statistic, given in Equation (3.5), can be extended to the K-
sample test can be defined by summation of two-sample tests for each of the
@ possible sample combinations. The resulting form for the K-sample E-
statistic is X

E, = e(Xi; Xj) (3.6)
17i<j 0K
where n =nqy 4+ I+ ng.

Let Pr(En > e) denote the limiting probability of E, for n ! 1 . It was
proven by Szekely and Rizzo that given [12 (0; 1) then there exists a ¢, such that
Pr(En > ¢-) = [J[51]. Thus a statistical test can be defined that rejects the null
hypothesis Hp : Dx, = Dx, at some statistical significance level [1if E, > c..
As shown in Section 3.7.3, the exact form of the distribution Pr(E, > e) is not

required, hence the technique is distribution-free.

3.7.3 The E-Test for Equality of Empirical Distributions

In practice, the exact form of Pr(E, > e) is not known. An approximation which
is accurate up to a given significance level can be computed using a permuta-
tion test [13]. The permutation test involves repeated random relabelling of the
sample points from the K samples X4;:::Xk which are pooled into the one list.
The accuracy and computation time of the test is dependent on the number of
bootstrap samples taken (i.e., the number of re-samples).

The permutation test proposed by Székely and Rizzo [51] takes the random

samples X1; ::5; Xk from the distributions Dyx,;:::; Dx, respectively. These sam-

ples are combined to form a pooled sample fYy;::5;Yng = Xq[ :i[ Xk. The
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number of re-samples B is selected such that (B + 1)[12 Z. The E-statistic E?
is computed for every bootstrap sample fYP;::;;Y,2g, b= 1;::;; B, using the new

K -samples X ;::;; X2 where

XP=fYp uunYegi=115K (3.7)
X

m = n (3.8)
i=1

mo = 0: (3.9)

After evaluation of EP for b = 1;:::; B, the following bootstrap estimate can be
applied:
1%
Pr(E, > e [l B I (Ep > e (3.10)
b= 1
where | (EP > €) evaluates to 1 if ER > e Finally the test statistic E? from the
original random samples f X ;:::; Xk g is computed, which enables the computa-
tion of the p-value,
1 X b 0.
p= B I (Ep > E}): (3.11)
b= 1

In general, if p < [ then it can be said that sufficient evidence exists to reject
Ho: Dx, =;:i5;=Dx, -

3.7.4 Application of the E-Test to Dynamical Distribu-

tions

As described in Section 3.6, random samples we collected of cellular automata
evolutions defined on genera 0;1; and 2 topologies. This resulted in a set of
samples X o; X 1; X in which X; 0 R*. In all simulation cases (i.e., a combination
of rule type and neighbourhood type; See Section 3.6.4), the sample sizes were all
equal; that is, ng = ny = na. The pooled sample size n ranged from 48 to 98; 304
depending on the simulation case.

Due to the sample sizes involved for some simulation cases (such as the pooled

sample size of n = 98; 304 generated by all binary rules types with Von Neumann
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neighbourhoods), the code implementation provided by Székely and Rizzo ' was
not suitable. As a result, a MATLAB® code port of the K-sample E-test was
developed to balance memory and compute time. The optimised MATLAB®
version provided the capability to run test without the need to use QUT’s HPC
resources. The MATLAB® code used for the E-test is given in Appendix C.

For each simulation case, the E-test was applied to the 3—S&Hlple test WJith thﬁ
sa%lples )éo; X 1; X5 drawn from the Dynamical Distributions D RAB‘ ,D RA'1\‘ ,
D RAQ . The null hypothesis being tested asserts that the dynamical distri-
butions are equal (Equation (3.2) with K = 2). In each test, B was selected of
sufficient size to support a significance level of 5% (that is [1= 0:05). The results

of these tests a given in Section 4.2.

3.8 Summary

In this chapter, the methods of analysis, and resources required for this study
have been presented. From formulation of the null hypothesis to the simulation
of cellular automata to the statistical analysis of dynamical distributions, each
component plays in study of topology and is effect on cellular automata dynamics.
The fine details of each component of the study has been given alongside the
context of that component within the study as a whole.

A preliminary error analysis of the global entropy measure was performed
to inform the choice of sample sizes in dynamical distribution sampling. The
development of an efficient method for detecting Garden-of Eden configurations
greatly reduced overall runtime. The results of this analysis are presented in
Section 4.1.

To simplify the study only binary cellular automata on the triangular tessella-
tion were studied, though the formalism used was that of graph cellular automata
to support topological variation. Approximations of dynamical distributions of
rule spaces induced by the triangular Von Neumann and Moore neighbourhoods

were computed using entropy metrics from many 1,000’s of simulations. Dynam-

Downloadable from http:// cran.r-project.org/ web/ packages/ energy/ index.html.
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ical distributions for topologies of genus 0, genus 1, and genus 2 were computed
in all cases.

The null hypothesis was constructed to assert the equality of the dynamical
distributions of cellular automat rule spaces regardless of topological genus. Dy-
namical distribution equality was tested using a distribution-free statistical test
based on the Euclidean distance called the E-test. The results of this test are
given in Section 4.2.

These methods have been presented to communicate the work that was per-
formed throughout the course of this project. Sufficient information on all meth-
ods has been given for an interest reader to repeat and test the results of this
work. The results of these methods and what they reveal about the research

questions are present in Chapter 4.
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Chapter 4

Results and Discussion

In this chapter, the results of all experiments performed on this project are pre-
sented. The initial entropy error analysis performed to infer required sample sizes
for entropy calculations are given in Section 4.1. The resulting dynamical dis-
tributions derived from many sampled entropy calculations are compared across
different topologies from a qualitative and quantitative perspective in Section 4.2.
Some interesting examples of critical phenomena are given in Section 4.3. Finally

the interpretations of results are discussed in Section 4.4.

4.1 Entropy Error Analysis

The reasoning behind selection of a certain sample size for entropy calculations
seem to be rarely presented in the literature [28, 32, 33, 74]. Perhaps, this is often
seen as “obvious” or common knowledge. It was decided that for this project an
estimation of expected errors in the entropy calculations should be computed to
inform the choice of sample size. The methods applied to compute the global
entropy error for a given sample size is provided in Section 3.5. In this section,
the results are presented and a discussion of how this informed the sample size

and the impact on expected error bounds follows.
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4. RESULTS AND DISCUSSION

4.1.1 Computed Errors for Elementary Cellular Automata

The exact global entropy was computed for every elementary cellular automaton
for cell counts n = 8;16;32. Entropy errors were computed for each automaton
using a large range of sample sizes which were chosen to represent a large range
in percentage of configuration space. The purpose of the selection was to test if
accuracy is dependent of sample size alone or whether it is also affected by the
size of the configuration space j®j = j>jj".

Sample size ranges varied for different cell counts. Automata with cell counts
n = 8;16 have a relatively small configuration space. Hence, it was trivial to
compute sample sizes up to 25% (i.e., N = 0:25j®j)of the configuration space.
However, it was not computationally feasible to take sample sizes of this size for
n = 32, thus only samples size of up to 0:25% of configuration space were taken.

For each cell count and sample size the resulting global entropy errors where
averaged to compute an expected absolute error for that case. This expected error
is plotted against sample size as a fraction of configuration space in Figure 4.1. It
is clear from Figure 4.1 that whilst each cell count case shows the same downward
trend as the fraction of configuration space sampled increases, there seems to
be no correlation between the different cases for a given fraction. It may be
reasonable to conclude from this that configuration space size is not the dominant
factor in trend of the errors.

This conclusion is further supported when the expected errors are plotted
against the actual sample size rather than the fraction of configuration space.
In Figure 4.2, the trends between the different cell counts seem much more cor-
related. In all cases, the expected error seems to converge to a steady state at
around N = 103. Interestingly, the error for N = 32 seems to converge much
sooner than n = 16; The reason for this is unknown, but it may have been due to
a particularly bad set of random samples. Ultimately, this can only be confirmed
by many repeated trials.

Though it seems that raw sample size seems to be the main driver of the trend
in expected error. There is still another notable difference between the cases.
The “steady state” reached in the error seems to increase as the configuration

size increases. The minimum reached by n = 8; 16 are about equal at E = 0:025,
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Figure 4.1: The global entropy error compared with sample size as a fraction of
configuration space.
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Figure 4.2: The global entropy error compared with raw sample size.

however for n = 32 the error never seems to get below E = 0:065. Of course, this
barrier would eventually be broken as N I j®j.

The ultimate conclusion from this analysis was that the expected entropy
error is affected by sample size and configuration space size. The factor with the

greatest effect on the error is clearly the sample size, but the size of configuration
space must still be considered.

4.1.2 Implications for Sample Size Selection

The entropy error analysis reveals that the sample size selected for entropy ap-
proximations cannot be selected in complete isolation from the size of the config-
uration space. When selecting the sample size in practice, one must also consider

the available compute resources available.

As discussed in Section 3.6.4, several different simulation cases were selected.

Each of these cases uses cellular automata with either 80 cells or 1280 cells.

From Figure 4.2 in Section 4.1.1, it may have seemed reasonable to simply set
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N = 1;000 in all cases. However, since the simulation cases with 80 cells require
less computation to simulate, it is reasonable to increase the sample size to ensure
the error reaches the “steady state’. As a result sample sizes of N = 100; 000
were selected for approximation of entropy measures.

The increase in computation required to simulate Automata with 1280 cells
meant that it was not practical to increase the sample size much beyond N =
1;000. Since the configuration space for this case is so gigantic, it is likely that
larger errors can be expected for this case.

Both simulation cases of n = 80 and n = 1280 have a significantly larger
configuration space than the cases selected for entropy analysis. Unfortunately
this could not be avoided as n = 80 is too large to compute the exacted global
entropy and n = 32 is too small to construct a topology of genus 1 or 2. Since
the error seems to increase from n = 16 to N = 32, it is expected that there will
be an increase in error.

Without a much more rigorous analysis, how this error is expected to increase
as the configuration space size increases is unknown. However, it can be seen
from Figure 4.2 that the error for a very small sample size N = 2 seems to be
converging. This error of E = 18% could be considered as the absolute maximum
expected error. Since the error certainly decreases quickly as N increase at this
point, it would be reasonable to conjecture that the overall expected error for the
interval N 2 [10%;10%] is in the range E 2 [0:065;0:1]. For the sake of this project

an error of around E = 0:08 is considered to be expected.

4.2 Comparison on Rule Space Classifications

4.2.1 Visualisation of Dynamical Distributions

Since the dynamical characteristics each cellular automaton in a rule space is rep-
resented by a 4-tuple (S-; W;1 ;1 ), the dynamical distribution is 4-dimensional.
Visualisation of these 4-dimensional structures for qualitative comparison is non-
trivial. Rather than try to visualise the complete shape of these distributions, the
dynamical distributions will be visualised in the two planes defined by the axis
pairs (S-;Wr) and (I -;1-). Due to the prior work in these planes [32, 33, 74, 76]
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(See Section 3.6.1), it is possible to interpret differences between dynamical dis-

tributions in terms of Wolfram’s classification scheme [63].

4.2.1.1 Entire Rule Space

For the simulation cases involving the Von Neumann neighbourhood (See Sec-
tion 3.3) it was computationally feasible to compute dynamical characteristics of
every cellular automaton in the rule space. There are 2'® rules in each of these
rule spacesJThe %imulatiorj resultSJof these cases represent the dynamical distri-
butions D Rys and D Ryize0  respectively with i 2 [0;1;2]. These results
are shown in Figures 4.3 and 4.4.

Qualitatively, there are certainly differences in dynamical distributions across
genera for n = 80 (See Figure 4.3). The most visually evident of these are in
S W, plane in the regions 0:4 < S < 0:7;0 < W < 0:015 (Class I/Class 1I),
0:9 < S, < 1:0;0 < W- < 0:02 (Class II), 0:5 < S5 < 0:8;0:1 < W5 < 0:12
(Class IV /Class I1I). Though not quite as obvious, in the | -; | - plane as contains
a visual difference around 0:7 < 1:0:9;0:1 < 1 < 0:15 (Class IV/Class III).

Interestingly the two most visually identifiable differences in both planes are
both located on a rough boundary region of Class IV and Class III cellular au-
tomata. In both cases the genus-1 topology seems to have a much higher density
of rules located in these regions. Using Figure 4.3 alone, it would seem that a rule
space RA’.]\‘ yields a higher population of rules located near the “edge-of-chaos”,
that there is a general trend that Class II cellular automata have much lower
Word entropies (i.e., less variation in oscillatory periods).

Unfortunately, the trends evident in the case for n = 80 do not seem to as n
increases. This can been seen in Figure 4.4, in which n = 1280. For this case there
is no clear visual difference between the dynamical distributions across topological

genera. A more detailed discussion of causal factors is given Section 4.4.

4.2.1.2 Totalistic Rules

Totalistic rules were only simulated for the Von Neumann neighbourhood via the
simulation cases VN_TOT_80 and VN_TOT_1280. In these cases only 2° possible
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Figure 4.3: Dynamical Distributions of R, g0 (top),Ry e (middle), and Ry g0 (bot-

tom) using a Von Neumann neighbourhood.
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Figure 4.4: Dynamical Distributions of Ry s2e0 (top),Rj 120 (middle), and R yzs0
(botton) using a Von Neumann neighbourhood.
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rules exist. The dynamical distributions for these totalistic rules are shown in
Figures 4.5 and 4.6.

In both simulation cases, there does not seem to be any visual difference be-
tween totalistic rule spaces across different topological genera. However, it is still
true that there is visually less variation in the case for n = 1280 (Figure 4.6)
over n = 80 (Figure 4.5). This is consistent with the behavior observed in Sec-
tion 4.2.1.1.

4.2.1.3 Outer-totalistic Rules

For the outer-totalistic simulation cases for both Von Neumann and the Moore
neighbourhood types were investigated. There are 28 possible rules in the Von
Neumann rule spaces, which is computationally feasible to explore entirely. How-

224 possible outer-totalistic rules for rule spaces in the Moore

ever, there are
neighbourhood so only a subset of these (the so-called “life” rules [7], of which
there are 10;000) were sampled. The results of these simulations are shown in
Figures 4.7 and 4.8 for the Von Neumann neighbourhood and Figure 4.9 for the
Moore neighbourhood.

Dynamical distributions are visually different between topological genera for
the case of n = 80 (Figure 4.7). This is most evident differences in the S-; W,
plane are in the regions 0 < S < 0:3;0 < W, < 0:03 (Class I/Class 11/) and
0:6 < S, < 1:0;0:06 < W < 0:12 (Class II/Class IV/Class III). In the first
region, rule spaces defined on a genus-0 or genus-1 topology seem to yield a
higher population of rules. The second region is dominated by rules defined on
a genus-0 or genus-2 topology; this seems to indicate that there are fewer rules
around “edge-of-chaos”. This is also reinforced by the fact that there are very
few genus-1 rules with | ;> 0:05 in the | ;| ; plane.

Just as in Sections 4.2.1.1 (i.e., the entire rule space) and 4.2.1.2 (i.e.,totalistic
rules), there is no visual (i.e., qualitative) difference in the dynamical distributions
across rule spaces defined on different topological genera for larger automata with
n = 1280 Figure 4.8. However, this becomes more interesting when we consider
the comparison of dynamical distributions for outer-totalistic rule spaces using a

Moore neighbourhood. The comparison distribution plot for the so-called “life”

61



4. RESULTS AND DISCUSSION

014 T T T T T T T T T ooz
o +
+
02 1
s
a1
0015
o008 +
5 -
005
om .
.
o0
o008 *
002
*
I L . . L+ . . L I I PP . . . L
o o1 0z 03 04 o5 s o7 08 09 1 ] o1 0z 03 04 i 05 o7 08 o3 1
014 003
+
+
0 + +
028
+
a1
002
+
+
s
ES —* a0is
006
oot +
o0s
.08 +
s
+
. +
. L . L . I I I L . . . L . L . I
° o1 0z 03 04 g5 05 o7 08 o9 1 ] o1 02 03 04 15 08 07 08 09 1
o o025
o
ol .
+
002
+
+
01
o015
ooaf- +
ES -
006
001
004t +
+
o008
00z
+
+
[ 01 0z 03 04 0 08 o7 s 0n 1 ] a1 0z a3 04 05 08 o7 08 09 [
L i

Figure 4.5: Dynamical Distributions of totalistic rules in R g0 (top),Ry 0 (mid-

dle), and Ry g0 (botton) using a Von Neumann neighbourhood.

62



4.2 Comparison on Rule Space Classifications

e L)
012 W +
2
o1
008 ' ¥
2 E
006
1
004
o8
002
+ e
I L I L L 4 L I L ,
o o1 0z 03 04 o5 06 07 08 03 1 o o1 0z 03 04 05 05 07 08 03 1
W
0
o x
P 28
.
.
01
fs
008
+
15 +
= 008 = *
Wk
004
o5
002
+
.
L L I L I . I L I . . . . . . . .
0 L oz L 04 e 08 o7 o8 o2 ! o 01 02 03 04 05 05 o7 o8 LY 1
0 N
3
0.1 1]
18 toq
01z +
+
16 1
+
o i *
14 1
-
(X1 4 12 4
= . ]
(X5 1
0e 1
004 - B 06 4
04 1
002 q
+ 0z . * 7
L I L I L +1 L I L . . . , . . . .
1 4
° " oz o3 o E,': oo o7 08 09 ! o 01 0z 03 04 05 o6 07 o8 02 1

Figure 4.6: Dynamical Distributions of totalistic rules in R, 1280 (top),Rx 1280 (mid-
dle), and R; y2e0 (bottom) using a Von Neumann neighbourhood.

63



4. RESULTS AND DISCUSSION

014 T T T T T T T T 0.08
n-,..ﬂ‘a
Fy +
oom - §
+
0z + 7 J
+
oor §
+
01 §
* * 005 8
.
0m - + * 8 005 1
= + +*
(15 §
005 4
+
+ ¥
003 * PR
004 + § +
+
*
o oozl +
2 ‘. * + o+
. :-ﬁ' * +
00z 8 ¥
* 001 AT + * e 3
é + + + Ty 3
B + .
.
. . . . . . . . . * % L . * L PP, 4
o o1 0z 03 04 a5 06 o7 0o 08 1 o o1 0z 03 04 [N 06 o7 e 03 1
B
u W
o T T T T T T T T T .06 T T T T T T T T T
R
A
a1
005 R
o1 *
.
004 R
a9
. +
E3 003 R
a0s *
&
*
ooz + +
o b4
+ + 7
* . * 1
+ +
. * * 0o + + T +
. b4 L |
- + + + L
‘y + + s L
- o - *. -
e ol 0z 03 04 g8 0 or 08 08 1 o 01 0z 03 [ o5 o5 07 e e 1
01a T T T T T T T T T 'w o35 -
R’
01z T % 03 1
* *
" e
+
01 B o025 §
»* +
0oe * q 0zr ,
= + -
+
008 4 (30 §
+
4 +
0.0 i 1 (A1 1
» *
o+
*
00z 4 [0 R
+ *
+ o+ " + et
L4 . 0 A +.
. . . . . . . . . . . PR, ST . LA AL £ ]
1 0 0z 03 04 g8 06 07 08 03 1 . a1 0z 03 04 95 0% 07 o [ 1
u W

Figure 4.7: Dynamical Distributions of outer-totalistic rules in Ry s (top),Rj g0

(middle), and R, g0 (bottom) using a Von Neumann neighbourhood.
2

64



4.2 Comparison on Rule Space Classifications

o [20 T T T T T T T T T
+
016
[R5 g
¥
4 +
+ 04
o1 *
+
0z
- +
.08 . - o
- . ¥
= g * -
L + 1 o08
0.8 . *
+
0.6
-
oos . -
.
+
‘4’; 0.04 ¥
o
002 + , .
ﬁ"' 202 + * W
- +
& H
+ I L I I 4 I I I - PP S I PP M
0 o 0z 03 04 [4 06 [ L 03 1 ] a1 02 03 04 98 05 07 08 [ 1
g W
014 T T T T T T T T T T T T T T T T T T
18 * B
oz Yo
¥
016 q
+ +
+
o1 . ™ 4
+ * (353 4
ooa - + .
*
= o + -0 B
Fl
o6l . * +
008 B
+
+ 4
one . 008
+
+
- 004 + B
L
o0z g
'*"’ 00z * +
W * o
+ \ \ . A . . . L PR IV, 4
] 01 0z 03 04 [ 08 o7 08 08 1 o o1 0z 03 2a us 06 o7 a8 0e 1
o T T T T T T T T T o.
+
(30 -
oz S
M o6 §
+ f
01 g
s 1 oaf §
. +
* L 1
o . o1z
+ -
3 o* .t = 1
* +*
006 -
- 008 -
+
ocak ¥ 1 006 b
-
+
ey vodl- ]
PO +
ooz *¥ 1 +
-t [ M
EL s Ll o+
+ e - Y
0 01 0z 03 04 o8 08 o7 (X3 08 1 o o1 0z 03 L I 08 or 08 L 1
5,

Figure 4.8: Dynamical Distributions of outer-totalistic rules in R y2s0 (top),Ra 1280
(middle), and R j2e0 (bottom) using a Von Neumann neighbourhood.
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rules is shown in Figure 4.9. In this case, differences between rule spaces occur in
similar regions (though the differences are not as extreme) in the outer-totalistic
Von Neumann case with n = 80. More discussion on this will be presented in
Section 4.4.

4.2.2 Configuration Transition Graph Properties

The configuration transition graph of a cellular automaton is a graph represen-
tation of the global dynamics of the automaton (analogous to phase portraits in
continuous dynamics [68, 76]). As discussed in Section 2.3.2, there are several
graph quantities that a useful for getting a picture the global dynamics; they are
the mean transient length, the mean cycle length, and the G-density. Calculation
of these quantities exactly is a computationally intensive task, for the purposes
of my project these quantities were only taken for the sample sizes identical to
the simulation cases as presented in Section 3.6.2.

It has been qualitatively shown in Section 4.2.1 that the Dynamical distribu-
tion of the rule space Ry 1280 seems to be minimally affected by changes in n (this
is also validated quantitatively in Section 4.2.4). However, qualitatively there is
still some variation in the average configuration transition graphs for these rules.
This indicates that in this case rule exist which still have their global dynam-
ics affected by topology even if the effect is not strong enough to case critical
phenomena to occur.

Consider Figure 4.10, the distribution of transient lengths is effectively the
same for any topological genus, but there is more noticeable difference in the
cycle lengths. Rule spaces defined on a genus 1 topology seem to have more rules
with smaller cycle lengths. This could represent Class II rules changing from a
simple oscillator to a point attractor.

When considering only the totalistic rules in Figure 4.11, there is very little
difference in configuration transition graphs. The mean cycle lengths are identical
for all topologies. One rule varies in the mean transient length by a few hundred
time-steps, however this may just represent a statistical outlier.

Just as in Section 4.2.1, the most interesting variation occurs when considering

only the outer-totalistic rules. In Figure 4.12, there is very little change in the
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Figure 4.10: Distributions of average transient lengths and average attractor cycle

lengths for rules in R, 1280, R, 1280, and R, 1280 using a Von Neumann neighbour-
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Figure 4.11: Distributions of average transient lengths and average attractor cycle

lengths for totalistic rules in Rj 1260, R, 1200, and R j2e0 using a Von Neumann

neighbourhood.
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4.2 Comparison on Rule Space Classifications

distribution of mean transient lengths, but there is quite a bit of variation in
the mean cycle lengths. There are many more rules with very small mean cycle
lengths for genus-1 topologies. The rules with cycle lengths in the range [10; 40]
are very much dominated by the genus-0 and genus-2 topologies. There is also

another spike in the density of genus-1 rules around the cycle length of 120.

Distiibulion of Transient Lengths (outertotalistic rules) DistribLitisn af Cysls Langths fouter.totaiistic rules)
T T

|'II|‘ I‘h 1 I i II{II’ III m m
k] an 80 100 120 0 1.0

8
Cycls Lengin

Figure 4.12: Distributions of average transient lengths and average attractor
cycle lengths for outer-totalistic rules in R, 1280, R, 1280, and R, 1280 using a Von
Neumann neighbourhood.

The exact interpretation of these results in the light of Sections 4.2.1 and 4.2.4
will be developed more in Sections 4.3 and 4.4. The key point to consider at this
stage is that topological genus may still impact the global dynamics of cellular

automata even if the dynamical class of the automata remains the same.

4.2.3 Results of the E-test

The 3-sample E-test for distribution equality was applied to the results of each
simulation case. Background on this E-statistic and the k-sample E-test is given
in Section 3.7. The MATLAB® code used to implement the test is provided in
Appendix C.
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Table 4.1: Results of the 3-sample E-test (with significance level [1 = 0:05) for

each simulation case.
Simulation case ‘ p-value

VN_ALL 80 0:005
VN_TOT_-80 0:99945
VN_OUTTOT80 | 0:0003

VN_ALL 1280 0:6
VN_TOT_1280 1:0
VN_OUTTOT_1280 1:0
M_LIFE_1280 0:01

The 3-sample E-test computes the probability of a particular E-statistic value
occurring under the assumption that the 3 samples come from the same distribu-
tion. For my project this is effectively computing the probability of the resulting
E-statistic under the null hypothesis given in Equation (3.2).

A common statistical significance level for rejection of the null hypothesis
is [0 = 0:05. The number of bootstrap iterations required for the E-test to
be accurate up to this level of significance is at least B = 100 (Recall from
Section 3.7.3 that B must be selected such that (B + 1)[12 Z). Table 4.1 shows
the resulting p-values for a significance level of (1= 0:05 and B = 1000.

4.2.4 Statistical Support for the Null Hypothesis

In Section 3.1, the formulation of the null hypothesis Hg was presented. This
hypothesis, which is defined in Equation (3.2), asserts that there is no difference
the dynamical distributions of cellular automata rule spaces we defined on differ-
ent topological genera. If strong evidence against Hg exists then it is likely that
changes on topological genus alone can have an effect on the global dynamics of
cellular automata. It is important to note that finding evidence against Hy is
not sufficient information to indicate the existence of “critical phenomena”, but
rather indicates that such phenomena could exist.

A common method of rejecting the null hypothesis is to compare the p-value

of the test statistic against a statistical significance level [, Typically if p < [,
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4.2 Comparison on Rule Space Classifications

then it can be said that sufficient evidence exists to reject Hg. At times this
method of hypothesis rejection can be mis-used or mis-interpreted. Rather than
be applying a binary decision of reject/accept the null, the following scheme is

employed
Op O O No evidence against Hg.
O p< [ Evidence against Hg.
O p< 0:1: Good evidence against Hg.
Op< 0:0100: Strong evidence against Hyg.

The results of the E-test for the different simulation cases are shown in Ta-
ble 4.1. Based on the above “levels-of-evidence” scheme and using [ = 0:05, there
is no evidence against Hq for rule spaces using a Von Neumann neighbourhood
with a larger cell count (i.e., simulation cases VN_ALL 1280, VN_TOT_1280,
VN_OUTTOT_1280) or for totalistic rules will small cell counts (i.e., simula-
tion case VN_TOT_80). When considering the entire rule space, there is good
evidence against Hg for rule spaces using a Von Neumann neighbourhood with
small cell counts (i.e., simulation case VN_ALL 80). The evidence against Hg is
strong for outer-totalistic rule spaces using a Von Neumann neighbourhood with
small cell counts (i.e., VN_.OUTTOT 80). There is also evidence against Hg for
outer-totalistic rules using a Moore neighbourhood with a larger cell count (i.e.,
M_LIFE_1280).

The “evidence” levels that are concluded from Table 4.1 seem to reflect closely
the qualitative differences in dynamical distributions observed in Section 4.2.1.
This provides quantitative support that changes in topological genus can effect
the dynamical distribution of a graph cellular automata rule space. Certainly
some of the observed regions of difference discussed in 4.2.1 do occur in regions
of dynamical “phase-transition”. Thus these statistically significant differences
could be a source of “critical phenomena”; a more detailed exploration of these

statistically significant regions is presented in Section 4.3.
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4.3 Critical Phenomena Exemplars

The results from Section 4.2 indicate that the dynamical distribution of rule space
can be effected (in some cases strongly) by the genus of the topology on which
the cellular automata in the rule space are defined. In this section, it is shown
that the effects of changes in topological genus extend to the individual cellular
automaton. This effect at the individual level can be significant enough to cause
a shift in the dynamical class of the automaton’s evolution in the general sense,
i.e., cause critical phenomena. It can even be demonstrated that these effects can
exist in cases in which the effect on the dynamical distribution of rule space is
near to non-existent.

Critical phenomena can be identified by significant changes in the rules en-
tropy measures across different topologies. A difference in these measures is
considered significant if the change is greater than the expected variation due to
entropy calculation error (Section 4.1.2), and the change moves the rule into a
different “region of dynamics” as discussed in Section 3.6.1. Using this approach,
examples rules which undergo critical phenomena were identified in all simulation
cases (excluding the totalistic cases).

Provided the local neighbourhood size is a large enough proportion of the
total cellular automata cell count, the change in the dynamical distribution of rule
space is (statistically) significant; thus the existence of critical phenomena is likely.
This is the scenario for the simulation cases VN_ALL 80 and VN_OUTTOT _80.
It comes as no surprise that critical phenomena examples are easy to find in both
cases.

The nature of the critical phenomena varies from rule to rule, but in every
observation that has been made thus far', one topological genus tends cause a
change in dynamics for that rule whereas the same dynamics is observed with the
other two genera. This can be demonstrated with rules 5738, and 18018 (Wolfram
code).

The critical phenomena observed for the outer-totalistic rule 5738 is a change
from simple oscillatory dynamics (i.e., Class II) when defined on a genus 0 or

genus 1 topology to chaotic dynamics (i.e., Class III) when defined on a genus

1t should be pointed out that not all occurrences of critical phenomena have been analysed.
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4.3 Critical Phenomena Exemplars

2 topology. However the non-totalistic rule 18018 exhibits chaotic dynamics on
genus 0 and genus 2 topologies, but becomes oscillatory when defined on a genus 1
topology. This can be shown quantitatively by looking at the shift in the entropy
measurements for this rule (Figures 4.13 and 4.14) and qualitatively using sample
space-time patterns'(Figures 4.15 and 4.16). There are also cases in which it is
the genus 0 topology which causes the unique dynamics (e.g., rule 7650), since it
is not feasible to present all of these cases, the reader is referred to Appendix D
which contains a larger (but by no means comprehensive) listing of interesting

entropy shift plots.
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Figure 4.13: Entropy Measure shift observed in the outer-totalistic rule 5738

(defined on a Von Neumann neighbourhood).

It would be reasonable to conjecture that a cellular automata rule space with
a small local neighbourhood relative to the automata cell count cannot exhibit
critical phenomena since the dynamical distribution of rule space remains effec-
tively unchanged. However, to the contrary, that examples of critical phenom-
ena can be found in such cases (e.g., VN_ALL_1280, and M_LIFE_1280, but not
VN_OUTTOT_1280), albeit such rules a far less common for these cases.

Some examples are the non-totalistic (Von Neumann Neighbourhood) rule
3986 (Wolfram code) and the outer-totalistic (Moore Neighbourhood) rule 7701

Note that these space time patterns are Cattened, and adjacent pixels do not represent
actual neighbours.
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1l |

Figure 4.14: Entropy Measure shift observed in the non-totalistic rule 18018
(defined on a Von Neumann neighbourhood).
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Figure 4.15: Critical phenomena observed in the rule 5738; Class II dynamics is
observed on a genera 0 and 1 topologies (LEFT and CENTRE), whereas Class
IIT dynamics occurs for genus 2 (RIGHT).
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Figure 4.16: Critical phenomena observed in the rule 18018; Class III dynamics
is observed on a genera 0 and 2 topologies (LEFT and RIGHT), whereas Class
IT dynamics occurs for genus 1 (CENTRE).

(Bays’ notation). Just as for the 80 cell cases, the effect of the topological changes
on individual rules is quite varied.

The non-totalistic rule 3986 exhibits simple oscillatory dynamics on a genus
1 or genus 2 topology, but becomes chaotic when defined on the genus 0 (Fig-
ure 4.17). Interestingly though, the rate of convergence to a simple oscillator is in
general much slower for the genus 1 case (Figure 4.18). This pattern is actually
common for the VN_ALL_1280 simulation case; this is discussed in more detail
in Section 4.4.

Life rule 7701 is a particularly interesting example. This rule locally exhibits
complex dynamics (Wolfram Class IV), yielding gliders and other complex struc-
tures. For example, the 22 period glider in Figure 4.19. Changing the topological
genus on which the rule is defined seems to push the rule closer to either the
chaotic or ordered side of the “edge-of-chaos”.

This rule tends to be the most complex when defined on a genus 1 topology,
whereas it has a tendency to explode into chaos on a genus 0 topology and tends
to be “short-lived” on a genus 2 topology. This is reflected in the entropy shift

pattern in Figure 4.20, in which the entropy signature moves from the chaotic
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Figure 4.17: Entropy Measure shift observed in the non-totalistic rule 3986 (de-
fined on a Von Neumann neighbourhood).

Figure 4.18: Critical phenomena observed in the rule 3986; Class II dynamics is
observed on a genera 1 and 2 topologies (CENTRE and RIGHT), whereas Class
IIT dynamics occurs for genus 0 (LEFT).

76



4.3 Critical Phenomena Exemplars
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Figure 4.19: A glider produced by the outer-totalistic “Life” rule 7701 defined
using the Moore neighbourhood. The glider has a period of 22 an proceeds

forward two cells each period.

region to the oscillatory region as the genus increase. The long term input entropy
is also shown in Figure 4.21. The genus 0 case remains close to 0:65, the genus 1
case starts to decrease but then suddenly (unexpectedly) increase demonstrating

complex behaviour, finally the genus 2 case steadily decreases.

au n

Figure 4.20: Entropy Measure shift observed in the outer-totalistic life rule 7701
(defined on a Moore neighbourhood).

Despite the unexpected discovery of critical phenomena in rule spaces that
seem globally unaffected by topological genus, no examples of critical phenomena
could be identified for purely totalistic rules. However, there do exist totalistic
rules in which topology does affected the evolution of a fixed initial condition.

Totalistic rule 278 is a good example when only initial conditions consisting
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Figure 4.21: Input entropy over time for life rule 7701.

of a single “live” cell are considered. Rule 278 grows from a single point in a
fractal-like pattern similar to the elementary cellular automaton rule 90. This
evolution is shown in Figure 4.22.

The long-time evolution of rule 278 changes quite dramatically from chaotic
behaviour (with an incredibly long attractor cycle) to a simple periodic pattern
when the topology is changed from genus 0 to genus 1. Portions of the respective
space-time plots are show in Figure 4.23.

Because we are only focusing on a single initial condition, it is easier to study
the cause of this change in long-time behaviour. Consider the comparison of Fig-
ures 4.24 and 4.25. Both images sequences look similar until t = 16 when the
genus 0 has clearly produced a different structure. What is being seen here is
the effect of the “pinch-points” (i.e., the regions just around the vertices of the
icosahedron) on the genus 0 topology. Under normal “flat” evolution (i.e., genus
1) the self-replicating “stars” will always expand in a regular pattern until the pe-
riodic boundary is reached, and all “stars” collide in a synchronised fashion (i.e.,
two colliding “stars” always touch on time t such that t mod 4 = 0) thus spawn-

ing a new set of initial condition clones at regularly spaced locations. However
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Figure 4.22: Fractal-like evolution of totalistic rule 278 from a initial point.
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Figure 4.23: Space-time patterns for rule 278 from initial “point” contition for
genus 0 (left) and genus 1 (right).

with the sphere (i.e., genus 2) the “stars” move slightly closer together around
a pinch-point, causing two stars to collide “out-of-sequence” and destroying the
repeating pattern. This phenomenon cannot be avoided as it is impossible to
“flatten” a sphere (See Ventrella [57]).

The set of examples that have been shown in this section demonstrate that
topological changes that preserve the homogeneity of cellular automata neigh-
bourhoods can still have an effect on individual rules. This effect can be a-typical,
only affecting the dynamics under a very specific set of initial conditions (e.g.,
rule 278 with point initial conditions). For some rules the effect can be so strong
that the general dynamical classification of the rule can completely change. The
strong effects of this nature can occur irrespective of the general effect of the
topology on the dynamical distribution of rule space. The examples given in this
section along with the visualisation and quantitative results in Section 4.2 provide

a basis for some discussion presented in the following section.
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Figure 4.24: Evolution of rule 278 from a point on a genus 0 topology.
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Figure 4.25: Evolution of rule 278 from a point on a genus 1 topology.
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4.4 Discussion of Results

The topological perturbations that have been considered in this study are much
more subtle that those investigated in the current literature [16, 32, 33, 42, 55].
By restricting mesh topologies to those that are equivalent to a surface mesh of
a given genus it has been possible to look at how topological variation alone can
effect cellular automata dynamics. Due to the preservation of neighbourhood
homogeneity, a given graph cellular automaton may be defined on a topology of
any genus while preserving local dynamics at any point’.

The study of complex systems is concerned very much with the nature of how
complex structures arise from simple interacting systems [64]. In Sections 4.2
and 4.3 it has been shown that the same set of simple interacting systems can
in fact yield different dynamical systems in the general case (i.e., under random
initial conditions) by operating over a different topology. The phenomena has
been observed both from a global “rule-space” dynamical distribution perspective
through to the perspective of individual rules dynamics and specific evolutions
based on simple initial configurations.

The goal of this study has not been to locate general trends in the relationship
between topology and cellular automata dynamics. However a few commonalities
have been found in the types of effects that do occur; some of which will be

discussed here.

4.4.1 Differences in Dynamical Distributions

The very existence of differences in dynamical distributions is quite significant.
It shows that it is possible for a cellular automata rule space to have a higher
density of a particular dynamical class of cellular automata when defined on one
topology over another. It logically follows that it is possible to maximise the
density of a particular dynamical class by variation of topological genus alone.
The significance of this effect has been shown to differ widely across rule spaces,

of which this section provides some insight.

IStrictly speaking, this is only true for totalistic and outer-totalistic rules. Non-totalistic
rules are not invariant to neighbour \reordering”, which means relative orientation must also
be kept consistent; This is not possible to preserve across topologies.
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The dynamical distribution of a cellular automata rule-space underwent the
most significant alterations when the cell count was small (i.e., the local neigh-
bourhood size was large by comparison). The most dramatic example of this is
the change in the dynamical distribution of rules in Ry s under a Von Neumann
neighbourhood.

For these small cellular automata the area occupied by a single neighbourhood
is a large fraction of the overall cellular space. As a result the maximum distance
of a neighbourhood to itself and the number of adjacent neighbourhoods many
be significantly different on average, even though the total number of neighbour-
hoods remains unchanged. In some cases, neighbourhoods are nearly adjacent to
themselves, which results in cells to having a greater influence on their own future
states. This could be a significant factor on the resulting changes in dynamical
distributions as the topological genus is increased.

So one might speculate, that changes in topological genus can only affect small
cellular automata or cellular automata with extremely large local neighbourhood
areas'. This is reinforced by the near zero change in dynamical distribution of
rules in Ry 1280 for the Von Neumann neighbourhood. However, a more signifi-
cant change is observed in the dynamical distribution of outer-totalistic rules in
Ra 1280 for the Moore neighbourhood. This shift is qualitatively similar (thought
certainly not as statistically significant) to the change observed in the dynamical
distributions of outer-totalistic rules in Ry g for the Von Neumann neighbour-
hood. So the magnitude of the effect topological changes have on the dynamical
distribution does not seem to be linearly dependent on neighbourhood size.

Dynamical distributions of totalistic rule spaces were observed to be com-
pletely unaffected by changes in topological genus. Though what happens beyond
genus 2 has not been investigated, it is reasonable to conjecture that the effect is
similar. As a result, totalistic rules could be considered stable under topological
variation. This is a useful result from an fault-tolerant applications perspective.

Applications for cellular automata are often most interested in a particular
dynamical class of automata. For example, chaotic rules (i.e., Wolfram Class
IIT) are of interest for encryption applications [76], whereas complex rules (i.e.,

Wolfram Class IV) are of interest for computer architecture applications. The

'Relative to total cell count.
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findings of this study indicate that it may be feasible to optimise a rule space for
a given general application area. Though more work needs to be done, this is a
significant finding in the study of complex systems as it could enable more focus
in modelling approaches.

The results also suggest (though by no means prove) an answer to the question
posed by Ventrella [57], that is “Are there unique spherical Machines?”. The very
existence of a topology yielding a higher density of a certain dynamical class could
imply that rules exist in that class which perform computation that can only be
achieved on that topology' It might be possible to use the results from this study

to identify such a unique machine.

4.4.2 Critical Phenomena

The differences in dynamical distributions for rule spaces are, generally, insignif-
icant for cellular automata with larger cell counts. As a result, the existence of
critical phenomena occurring for larger cell counts was surprising.

The nature of the critical phenomena is varied across cellular automata. Some
rules, such as life rule 7701, seem to transition from chaotic to complex to or-
dered classes as the genus increased. Other rules, such as outer-totalistic rule
55166 remained in an oscillatory dynamical class but the rate of convergence de-
creased. And still others, such as life rule 4757, change dynamical class, but a
clear correlation to topological genus is not readily identifiable.

Overall though, certain trends in critical phenomena were still observed. For
example, consider the near identical entropy shifts observed in rules 1842,3890,
3986, and 19226. These rules all exhibit chaotic/complex behaviour on a genus
0 topology, but exhibit oscillatory/ordered behaviour on a genus 1 or genus 2
topology. Another example, which seemed to mostly occur for smaller cell counts,
is the entropy shift observed in rules 18018,33022,54612,43966, and 21846. In

this case, cellular automata dynamics are homogeneous on a genus 1 topology,

LExcept by simulation by a Turing complete cellular automaton. Theoretically, all possible
cellular automata can be simulated by rule 110. Thisis not what is meant by \ Unique spherical
Machine".
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but genus 0 and genus 2 either both exhibit chaotic or both exhibit oscillatory
behaviour.

What features of cellular automata rules influence the types of critical phe-
nomena that can occur? This question is beyond the scope of this study. However,
identification of such features may result in other cellular automata classifications
beyond that of dynamical class..

The existence of critical phenomena with rule spaces which do not undergo
changes in the dynamical distribution across topologies indicates a form of con-
servation law in these cases. That is, a rule may change dynamical class across
topologies, but the total number of rules for each dynamical class remains con-
stant’ across topologies. For example, if a rule is found switches from chaotic
dynamics on genus 0 to ordered dynamics on genus 1 then it must be that a
set of rules exist in which the total of their dynamical changes overall achieves
opposite.

What types of rule spaces have this property? This kind of conservation
behaviour is observed in Ry s2s0 using the Von Neumann neighbourhood. We can
not speculate on any set of conditions that many be sufficient for the existence
of such conservation behaviour, but a necessary condition could be a small local

neighbourhood relative to the cell count.

4.4.3 Alterations in Specific Evolutions

It has been established in Section 4.4.1 that some cellular automata rules, such
as totalistic rules, are stable under topological variations. However, even for
these types of rules specific evolutions of a given initial condition may be altered
dramatically. Though such cases have no relation to the dynamical classification
of the rule itself, the existence of such case is still of interest.

The kind of effects observed are very much like those observed by Ventrella [57].
That is, alteration of a topology actually affects the regularity of the space and
impacts how a particular pattern can grow. The most significant example of such

alterations in regularity are the so called “pinch-points” of the genus 0 topology.

LAt least approximately constant.
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These pinch-points are the neighbourhoods around the vertices of the underlying
icosahedron, such structures cannot be avoided [57].

In the case of totalistic rule 278 on the Von Neumann neighbourhood, the
pinch-points greatly influence the evolution of the rule with an single point initial
condition. When the growth of the fractal-like pattern reaches the pinch-points
the boundary is contracted around these points, resulting in an “out-of-sequence”
collision of structures which causes a chaotic pattern to emerge. On the genus
1 topology no such pinch-points exist, allowing the pattern to grow uniformly
until it collides with itself, which in turn spawns a new point configuration and
oscillatory dynamics begins.

Rules that produce gliders are also influenced by these irregularities. Ventrella
observed that a glider produced by a rule similar to Conway’s Game of Life
displayed phenomena such as gliders spontaneously changing direction [57]. 1
have observed that gliders produced by life rule 7701 interact in different ways
with the pinch-points depending on the “angle of impact”. The glider is in some
cases (e.g., head on collision) simply annihilated, but in other cases (e.g., offset
collision) explodes into a complex/chaotic structure which is sometimes long-
lived.

Different topologies also affect the number of potential collision points between
two gliders. The trajectories of two perpendicular gliders cross each other twice
on a genus 0 topology, once on a genus 1 topology, and on a genus 2 topology
they need not cross at all. How these collision points effect the evolution of such
glider rules in general could be of interest to cellular automata models of physical
systems. This is another point of future work for which this this study forms a

basis.

4.5 Summary

In this chapter the results of the methods described in Chapter 3 have been pre-
sented. This included the entropy error analysis and the comparison of dynamical
distributions of rule spaces across different topologies.

The entropy error analysis revealed that sample sizes had the greatest influ-

ence on error, rather than sample size as a fraction of configuration spaces. This
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allowed the approximation of the expected error when comparing distributions for
a given sample size. It also provided a means of trading of performance and ac-
curacy efficiently. Fortunately reasonable approximations could be made for the
entropy measures using samples sizes which made simulations computationally
feasible.

The dynamical distributions for rule spaces of the different simulation cases
were qualitatively compared using visualisation, and quantitatively compared us-
ing the E-test. In both methods, the evidence indicated that topology can signif-
icantly change the rule distribution when the cell count is small, but some change
is still observed for larger cell counts, even more so for the Moore neighbourhood.

Examples of critical phenomena behaviour have been provided for every sim-
ulation case, except for the totalistic cases. Though the effects are varied in both
degree and type, there are some trends in what dynamical class a given genus is
likely to induce.

Some discussion and conjecture has been presented in this chapter. This will
be linked to the research questions in order to draw final conclusions in the next

and final chapter.
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Chapter 5

Conclusions

The purpose of this project was to investigate how a cellular automata rule space
can be affect by changes in the topology of the network of cells. Very little is
understood about behaviour of cellular automata on arbitrary topologies, and
there are very few researchers who have dedicated any time to this area [16].
This project makes a unique and original contribution to this relatively new area
of complex systems theory.

Research in complex systems theory through the use of cellular automata
has primarily been conducted with respect a regular lattice of cells [42, 57]. To
produce realistic models of real world phenomena more complex structure must
be dealt with. The desire is to be able to construct models that are stable under
alterations in topology, thus a deeper understanding of the interactions between
structure and dynamics is required [16]. Relationships between structure and
dynamics may also help focus the modelling process, which is often non-trivial.

The research questions of this project relate to the observation of critical
phenomena in cellular automata caused by changes in the topological genus of

the underlying cell space. These questions are as follows,

[0 Can critical phenomena be caused by topological variations which preserve

homogeneity of local neighbourhoods?

[ Do critical phenomena occur often enough to cause a significant change
in the distribution of cellular automata dynamical classes across the rule
space? If so, which topologies are best for maximising the concentration of

a particular class.
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[1 Can other dynamical differences still be observed across topologies when no

critical phenomena are observed?

5.1 Results in Context

In this section, the results and discussion presented in Chapter 4 are related
back to the original research questions in order to extract conclusions on these
questions.

Can critical phenomena be caused by topological variations which preserve
homogeneity of local neighbourhoods?

This study revealed many instances of cellular automata in which critical
phenomena occurs under such topological changes. In some cases this was extreme
enough to observe three classes of dynamics across the three topologies. By the
enforcement of homogeneous local neighbourhoods, we have shown that global
structure of cellular automata can alter dynamics to the same level as the local
structure. This is a unique finding of this study, as previous work has look at
significantly modified the homogeneity of the local neighbourhoods [337 .

Do critical phenomena occur often enough to cause a significant change in the
distribution of cellular automata dynamical classes across the rule space? If so,
which topologies are best for mazrimising the concentration of a particular class.

Of the various cellular automata rule spaces we extensively simulated, there
were several in which the changes in the distribution of entropy values were
statistically significant across the different topological genera. It follows that the
overall distributions of dynamical classes is also affected to a similar significance.

The most significantly affected rule spaces had either a larger local neigh-
bourhood definition or a very small cell count. It is reasonable to conjecture
from this that for a sufficiently large local neighbourhood, variations in topol-
ogy are guaranteed to impact the distribution of cellular automata dynamical
classes. Conversely, to maintain stability of the rule space under such topologi-
cal changes the neighbourhood size must be limited. The statistical significance
levels also indicate that the effect of the distribution increases in a super-linear

fashion with respect to relative neighbourhood size. One particular exception to
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this conjecture,however, is that of totalistic rules. The results a quite conclusive
that the distributions of dynamical classes for totalistic rule spaces is constant.
More work needs to be performed to determine more detailed relationships with
the distribution of rules and the topological genus.

The second part of this research question relates to the identification of a
topology which maximises the density of a given dynamical class. The observation
of changes in cellular automata dynamical classes due to topological changes
implies that for a given dynamical class there exists such a maximising topology
for that class. Is this topology the same regardless of the size of the cellular
automaton and local neighbourhood size? We have not been able to investigate
this in detail. We did however observe that a genus 0 topology seemed to host
more chaotic dynamics, genus 1 more complex dynamics and genus 2 more ordered
dynamics. If this trend is in fact what occurs in the general case, then this does
have implications for design of applications and more broadly for complex systems
theory.

Can other dynamical differences still be observed across topologies when no
critical phenomena are observed?

The results have also shown that a cellular automaton that, under topological
variation, does not undergo a significant change in dynamics in the average case
can still generate significantly different space time patterns for a certain fixed
initial condition. This is demonstrated clearly in the evolution of rule 278 from
an single point initial configuration across a spherical (i.e., genus 0) or toroidal
(i.e., genus 1) grid as shown in Section 4.3. Variations of glider behaviours due
to irregularities caused by the spherical grid support the conjecture by Ventrella
that there may exist cellular automata evolutions which are unique to a certain

topology [57].

5.2 Implications

There are several implications to complex systems theory and applications coming

directly from this study.
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Cellular automata are typically classified by the average long time evolution
from random initial conditions, this was the classification scheme proposed by
Wolfram. The results of this study have shown that certain cellular automata
change in class depending on topology, even though local neighbourhoods are pre-
served. Largely this impacts a cellular automatons stability. It may be necessary,
as we learn more about the role of topology in dynamics of cellular automata,
that an additional classification be applied which is based on the nature of the
critical phenomena observed on average. An example of such a scheme in the

context of neighbourhood preserving topological changes could be,

1 Class A: The dynamical class of the cellular automaton is a constant across

topologies.

[ Class B: The dynamical class of the cellular automaton transitions from

ordered to chaotic as the topological genus increases.

[0 Class C: The dynamical class of the cellular automaton transitions from

chaotic to ordered as the topological genus increases.

[ Class D: The dynamical class of the cellular automaton transitions un-
predictably between chaotic,complex, and ordered as the topological genus

increases.

The identification of topologies with a higher density of certain dynamical
class has implications for applications. Applications which depend on a certain
dynamical class have a richer rule space to deal with if the maximising topology
is selected; an example of such an application is cryptography which requires
chaotic cellular automata. In the case of chaotic dynamics this is likely to be the
genus 0 topology. Furthermore, consider the observation that complex dynamics
seemed to be more common in the toroidal case, does this have implications for
theoretical models of physics which are based on cellular automata? Could our
universe in fact be a torus? Interestingly, this is already a theory held by some
cosmologists [48].

When considering cellular automata as models of computation, topology may

impact an algorithm’s performance in terms of speed and accuracy. The potential
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existence of machines which are unique to a given topology could mean that a
given problem has an optimised solution only within a given topology. How sig-
nificant can the performance gain be? Could it provide insight into relationships

between computational complexity classes?

5.3 Future Work

This project has only scratched the surface of the interaction of topology and
cellular automata rule spaces. There are still many unanswered questions. The
most interesting I have listed here for future work.

Do the kinds of critical phenomena observed for binary cellular automata in
the triangular tessellation continue to occur in cellular automata with larger state
spaces or on other tessellations (e.g., square, or hexagonal)? What about larger
neighbourhoods?

Do limiting behaviours occur as the topological genus increases? In this study,
only topological genera 0, 1, and 2 where investigated. What happens as the genus
approaches the cell count?

Can some of the conjecture made in this thesis be verified analytically? This
project has been very much empirical and exploratory. With more focused theory
it may be possible to prove the existence, or even a method of finding the topology
which maximises a given dynamical class.

What novel applications can take advantage of these topological effects? How
can we use knowledge of how a cellular automaton changes with topology to
design new models?

Is there merit in the addition of a classification scheme based on the stability
of cellular automata under topological variations? This has been very much an
after thought of this project, but it may actually provide insight into relationships
between discrete dynamical systems.

In summary, we have provided an initial platform for many future projects in
complex systems theory to build off. We have answered some questions, but it
leaves us asking even more. Hopefully a few, if not all, of the above topics are

subject to a study in the near future.
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5.4 Concluding Remarks

In this thesis, an original study as been presented investigating the effect of
topology on cellular automata rule spaces. The findings indicate that the changes
in topological genus alone can significantly impact the long time evolution of a
given cellular automaton. Not only this, but the distribution of dynamical classes
can be altered for the rule space as a whole. This represents a unique and original
contribution to the area of complex systems theory, with potential far reaching
implications understanding of the complexity which occurs around us in real

biological and physical systems.
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Appendix A

Publication: An Efficient
Algorithm for the Detection of

Eden

We have developed a polynomial-time algorithm to approximately solve the Eden
problem for graph cellular automata and exactly solve the Eden problem for
regular 1-d cellular automata. This algorithm was applied in order to compute
entropy values for error analysis as described in Section 3.5.1. Aside from the
immediate usage in this project, the Neighbourhood Elimination method has
proven to been a very efficient method for solving the Eden problem with a
significant reduction in the worst case computation time. The contents of this
appendix is the original Journal paper manuscript which has been submitted and
accepted to the Journal Complex Systems and is inprint to be published in a 2013

issue of the Journal.
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In this paper, a polynomial time algorithm is presented for solving the
Eden problem for graph cellular automata. The algorithm is based on
our neighborhood elimination operation which removes local neighbor-
hood configurations which cannot be used in a pre-image of the given
configuration. This paper presents a detailed derivation of our algo-
rithm from first principles, and a detailed complexity and accuracy
analysis is also given. In the case of time complexity, it is shown that
the average case time complexity of the algorithm is ©(n?), and the
best and worst cases are Q(n) and O(n®) respectively. This represents
avast improvement in the upper bound over current methods, without

compromising average case performance.

| 1. Introduction

Cellular automata and more generally discrete dynamical systems are
powerful tools for modeling of complex phenomena [14]. This includes
applications from physics, biology, and computer science [1]. Some
have even speculated that the study of cellular automata may lead to

a Grand Unified Theory of everything [13].

The study of the global dynamics of cellular automata (i.e., the
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Complex Systems, volume (year) 1-1+; year Complex Systems Publications, Inc.



2 D. J. Warne, R. F. Hayward, N. A. Kelson, D. G. Mallet

study of automata configuration transition graphs) can provide unique
insight into complex systems [20]. Effi cient construction of a configu-
ration transition graph typically requires a method to determine if the
given configuration is located on a leaf node of this graph [17].

This problem is known as the Eden problem, and has been shown
to be computationally intractable for d-dimensional systems when d >
1. This is reflected in the worst case computational complexity of
algorithms that solve the Eden problem for higher dimensions (e.g.,
Wuensche's general reverse algorithm [19]).

We present a new algorithm for approximately solving the Eden
problem for graph cellular automata (i.e., cellular automata on graphs|[8,
7]); themost general form of deterministic cellular automata. Although
there exist rare instances in which the algorithm will fail to identify
the non-existence of a pre-image, this is made up for by it’s asymp-
totic complexity class which is O(n?) for the worst case and ©(n?) for
the average case. This provides a method which is more computation-
ally feasible in the worst case than approaches based on Wuensche and
Lesser’s reverse algorithm [20] and Wuensche's general reverse algo-
rithm [19] for the study of the global dynamics of higher dimensional
discrete dynamical systems with potentially a large number of cells.

I 2. Background

I 2.1 Discrete dynamical systems

A regular cellular automaton can be defined as a lattice of finite state
automata, typically referred to as cells or sites. A state transition
function defines how a cell updatesits state based on it’s current state
and the state of it’s neighbors. Cells update synchronously in discrete
timeintervals. The sequence of all cell states at a given timeisreferred
to as the automaton’s configuration.

Random boolean networks are binary cellular automata with one
critical difference; thereisno requirement that cellsbelocated on areg-
ular lattice [19]. Instead, neighborhoods are constructed via a random
wiring. Thisrandom wiring makes random boolean networks useful for
theoretical biological models of genetic regulatory networks [5, 18].

Graph cellular automata (also referred to as Generalized automata
networks [11]) are a generalization of both cellular automata and ran-
dom boolean networks. For a graph cellular automaton, cell connec-
tivity is defined by a connected graph. The class of graph cellular
automata contains regular cellular automata and random boolean net-
works as sub-classes. Cellular automata and random boolean networks
can be considered as discrete dynamical systems. Despite their sim-
ple construction, discrete dynamical systems have been shown to be
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capable of very complex behavior [16, 15, 6]. Furthermore, compu-
tationally intractable, and formally undecidable problems relating to
discrete dynamical systems have been shown to exist [3, 9.

1 2.2 The Eden problem

A particular problem of interest in the study of the global dynam-
ics of discrete dynamical systems is the so-called Eden problem (also
called the Predecessor existence problem [10, 2]). The Eden problem,
attemptsto determine, for a given automaton, if there exists a configu-
ration (i.e., pre-image) that will evolve to the given configuration in the
next time step. If the Eden problem is resolved to be f alse then the
configuration is called a Garden-of-Eden configuration (i.e., it has no
pre-image). Wuensche and Lesser studied the Eden problem in depth
and developed a reverse algorithm for one dimensional regular cellu-
lar automata [20]. Wuensche further generalized this approach to the
case of random boolean networks, which may also be applied to graph
cellular automata [19, 17]. While Wuensche and Lesser’s method per-
forms very well for small cellular automata, this methods upper bound
is O(2") (as we will show in Section 5.1) which prevents exploration of
large discrete dynamical systems.

For one-dimensional finite cellular automata the Eden problem is
in P, however for multi-dimensional finite cellular automata the Eden
problem has been shown to be NP-Complete [10]. Even certain vari-
ants of the Eden problem in one-dimension (such as the Constrained
Eden problem [9]) have been shown to be NP-Complete. Assuming
that P 6 NP, then there does not exist a polynomial time algorithm
to solve the Eden problem for graph cellular automata.

If weassumeP 6 NP, then acompletesolution tothe Eden problem
for graph cellular automata is computationally intractable. However,
this does not exclude the possibility of a good solution (i.e., one that
can identify most Garden-of-Eden configurations) being achievable in
polynomial time. In thispaper, we present an algorithm which provides
a good solution to the Eden problem for graph cellular automata in
cubic time. By solving the problem for graph cellular automata we, by
extension, solve the problem for regular cellular automata and random
boolean networks. Furthermore, we can show that our algorithm solves
the Eden problem exactly when the topology of the graph cdlular
automaton is equivalent to a one dimensional finite cellular automaton
with periodic boundary conditions.

1 2.3 Formal definition of graph cellular automata

In this section, we provide a formal definition of graph cellular au-
tomata. Our formalism is based heavily on the work of Fates [4], Marr
et al. [8, 7], and Tomassini [11].
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We consider a graph cellular automaton to be defined as a 4-tuple
consisting of a connected graph, a set of states, a set of neighborhood
mappings and a set of state transition functions. Thisis given formally
in Déefinition 1.

Definition 1. Let A = (GIX[UIT) define a graph cellular automaton,
where G = (VIE) isagraph with verticesV c Z and edgesE € Vx V,
> isafinite set of symbolsreferred to asthe alphabet, U = {h; :i e V}
is the set of neighborhoods h; = {i} u{j : (ij) €eE v(jL) € E}, and
= {g :i €V} istheset of all statetransition functionsg; : !Nl — 3.

In Déefinition 1, the vertices of the graph G represent the cells of
the automaton A. Note that the neighborhood, h;, of each cell, i, is
efectively the set of cells that are connected to cell i via the set of
edges E including i itself!.

At any time t each cell is associated with a state . For this we
define the mapping in Definition 2. From this we can construct the
global configuration of the automaton in Definition 3.

Definition 2. Let C : V — X be a mapping from acel i € V toa
state 0 € ¥ such that C!(i) representsthe state of cell i at timet. Let
C!(h;) € =!Ml be the neighborhood configuration of i.

Definition 3. Let ¢ = {C(i) : i € V} be the configuration of the
automaton A at timet. ¢ € ® where ® is the set of all possible
configurations of A.

Finally we define the evolution of a graph cellular automaton as the
sequence of configurations generated by repeated synchronous applica-
tion of thelocal statetransition functions. Thisisgiven asa recurrence
relation expressed in terms of the global configuration transition func-
tion. Thisis given in Definition 4.

Definition 4. Let the recurrence relation @*' = f(¢!)t = 0 be the
evolution of A, wheref : ® — ® is the global configuration transi-
tion function f (¢') = {(@' [ ") : @' = {Cl(i) :i e V} ag*! =
{g(C'(hi)):i eV}}.

We can now define formally an instance of the Eden problem.

Definition 5. Problem: The Eden problem (eden).

Instance: A graph cellular automaton A and a configuration @ € IV
Question: Does there exist an initial configuration ¢° such that ¢ =
f (¢°) under the evolution of A?

"Note that the construction of h; in Definition 1 assumes an undirected graph,
the definition for a directed graph would be h; = {i} u{j : (j) € E}.
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In Section 3, we will rely on the formalism given in this section
to derive a polynomial time algorithm which provides the solution to
eden(A,o) in all but rare circumstances.

I 3. The algorithm

In this section, we present a detailed derivation of our Eden detection
algorithm, denoted by eden-det (A (¢). There is a number of steps
involved in this derivation. Firstly, some new mathematical construc-
tionsaredefined. Then the fundamental operation of eden-det (A L),
the neighborhood elimination operation, denoted by nh-el im(A (H),
is derived. After presenting nh-el im(A[H) a simple Eden detection
algorithm is provided, denoted by s-eden-det (A [¢p). Using s-eden-
det (A () as a starting point we then derive a two phase construction
of eden-det (A (o).

B 3.1 Preliminaries

Thegraph cellular automata formalism given in Section 2.3 isnot quite
suffi cient for us to express our Eden detection algorithm clearly. In
this section, we present the definitions and notations that form the
mathematical foundations of the algorithm. All definitions, notations,
and theorems in this section assume the formalism in Section 2.3 to be
given, and hence symbols used from Section 2.3 will not be re-defined.

We will assume, without loss of generality, that ¥ € V(]h;| = k.
This is done purely for notational convenience. All of the concepts
applied in the construction of our algorithm can be extended trivially
to non-uniform |h;|. Note that we do not assume a uniform update
rule across all cells M(j e Vig = g.

To describe our algorithm, we need a method of consistently refer-
ring to a specific neighborhood configuration (see Section 3.2). The
notation for this reference is given in the following definition.

Definition 6. Assume that some ordering scheme has been applied to
the set of all neighborhood configurations ZX. Subject to this ordering,
the nth neighborhood configuration is denoted by w, € k.

Note that the actual ordering scheme is arbitrary, all we require is
an index into the possible neighborhood configuration space. For our
implementation we simply map each configuration to its raw binary
representation.

It is necessary for us to specify a set that contains all the cells that
join adjacent neighborhoods. We refer to this set using the notation
iZi and it is defined in Definition 7.

Definition 7. Let 1=l = {i} u{j} u{x : ((xi) € E v(i(x) € E) A
((x[j) € E v(jx) € E)} denote the boundary set of h; and h;. The
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G=(V,E) =
U1 —1,2—=03—-04—=15—=0 Pa:l—1,2—-03—-04—-15—-0
Py 4d—1,5—-16—-17—08—=1 P4 —1,0—-0,6—-17—-08—1

Figure 1. Example of i [j -consistency wherei = 3,j = 6, and =/ = {3[4[5(6}.
LEFT: y, isnot ilj-consistent with respect to wy since they cause an incon-
sistent state in the boundary set (i.e., cell 5). RIGHT: A madification to yn
allows consistency across the boundary set, hence y, is now i[j -consistent
to Ym.

nth boundary cell, x € V, is denoted by x = '=1.

The basis of our algorithm is the detection and removal of neighbor-
hood configurations which cannot exist in any pre-image of ¢! due to
an inconsistency across boundary sets.

Definition 8. |fthereexistsan initial configuration @° such that C%(h;) =
Yn and C°(hj) = WYm, then y, is said to beilj -consistent with respect
to Yn.

The concept of i[j -consistency is readily visualized as shown in Fig-
ure 1. However, it would be preferable if a direct method of evaluating
thei[j -consistency of two neighborhood configurations could be found.
The function we require is given in Definition 9.

Definition 9. Let 8 : =k — ZI'='l be a function which maps neigh-
borhood configurations of h; to the configuration of the boundary set
=i, The function is defined as 8= = {(Wn[W,) : Yns = Wngq AY =
higAy =" =L As € [072))}.

The definition of 8 given in Definition 9 may seem strange, but it
leads us into Theorem 1 which is a vital component of our algorithm.
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Theorem 1. If 6% (yn) = ejE‘(qu) then y, isilj-consistent with re-
spect to Y.

A formal proof is given in Appendix A.

1 3.2 Neighborhood elimination

We can now formulate the core operation of our Eden detection al-
gorithm. This core operation we call neighborhood elimination and
denote it asnh-el im(A,H). As the name may suggest, its function is
to eliminate neighborhood configurations which cannot be a component
of any pre-image of the automaton configuration in question.

To explain how we perform this operation, we first consider the
matrix H € {01} 21" IVl where

001 impossible for g = CO(hj) _
10 otherwise a

i = (1)
It is important to note in Equation (1), that Hj; = 1 should not be
interpreted as y; = C°(h;) in at least one pre-image. Instead, Hij = 1
means we cannot yet determine if y; = CO(hj) or not. Thisisnot the
case for Hi; = 0, which indicates that we have proven that thereis no
pre-image such that g = Co(h;).

The algorithm can be described as follows: Consider the case in
which we have already determined that H;; = 0 for specific ifj by
techniques described in Section 3.3. If we start with an arbitrary cell
neighborhood h; then the column vector H.; provides us with the
neighborhood configurations still under consideration. If H,3 = 1, but
the neighborhood configuration y, isnot i[j -consistent with respect to
any candidate configurations in one or more connected neighborhoods
h;, then g, can be excluded from the realm of possible configurations
for h; asat least oneboundary cell state cannot be satisfied consistently.
By updating H.; this will affect the validity of other configurations, so
we repeat the process for every neighborhood.

Theorem 1 provides us with a comparison operation for testing the
i [j -consistency of two neighborhood configurations. With the func-
tion 8= as defined in Section 3.1, we arrive at nh-el im(AH) (i.e,
Algorithm 1).

One step of nh-el im(A [H) isshown in Figure 2 displaying contents
of the data structures ©;,0;, and ¢ along with the efect on the state
of H. It should be noted that although the example in Figure 2 is for
a small 1-d céllular automaton with k = 3, nh-el im(AH) is general
enough to operate on graph cellular automata.

One particularly useful property of nh-el im(A [(H) isthat the num-
ber of zero elements in H can never decrease. Therefore, repeating
nh-el im(AH) on H in an iterative fashion will eventually result in
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Algorithm 1 nh-el im(A,H): Neighborhood elimination.
for all i eV do
for all j € hi - {i} do o
O — x:x €87 (y) AHpi = 1
n [0}

O — x:x€8 (yg) AHg = 1
G —{x:xe€0O Ax &0}
W Hpi — 0 if 8% () €4

end for
end for
»% = {000,001,010,011,100,101,110, 111}
E k+1
(.0 0 .. ] -
I 0 0, — {.L’ s €05 () A H,y = l}
0 1
H— 1 1 e, ={01,11}
0 1 =i,
0 0 0 «— {r rref (V) NHy = 1}
0 0 0, ={01,10}
0 0 ..
- 00 ‘Z (,-?—{.r:a:E(-},f\.ré(-)j}
10 G ={11}
0 1 =
H,; — 0¥p, (07~ €
e 01 I P ( ¢ )
0 1 Hy;, =0
0 0
0 0
L D 0 =

Figure 2. One Step of nh-el im(A [H). Theupper left matrix isH at the start
of the iteration, after the iteration is completed Ha4x is set to O, resulting in
the lower left matrix H'.

an array H in which only configurations i[j -consistent with respect to
all neighbors are candidates for pre-image construction. This property
also enables us to put an upper bound on the number of iterations
required, which aids us in our complexity analysis (see Section 4).

1 3.3 Garden of Eden detection

In this section, we will describe our Eden detection algorithm (eden-
det (A,9)) in full. Throughout this description we rely heavily on the
formalism in Section 2.3 and Section 3.1.

So far we have assumed that H is not all ones or all zeros, but we
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have not mentioned how H is initialized. If we are given an instance
of eden(A,p), we can prove the impossibility of some neighborhood
configurations explicitly by using @ and the state transition functions
g €I, that is,
g= o0 WIB e @
10 g (W) = ¢

In Section 3.2, it was stated for nh-el im(A (H) (Algorithm 1) that
the number of zeros in H can never decrease. Therefore, repeated
invoking of nh-el im(A [H ) is guaranteed to converge to a steady state.

Once H is initialized, we can repeatedly operate the neighborhood
elimination algorithm on H. Clearly, if for any column ¥M(H;; = 0
during a iteration, then there is no possible y; that can be selected for
h; in any pre-image. Furthermore, the steady state that H will con-
verge to in this case will be W [j[H;; = 0. Therefore we can conclude
that @ is a Garden of Eden configuration.

We might also assume that all Garden of Eden configurations will
cause the condition, M[H;; = 0. Therefore, we could simply iterate
until a steady state is reached and then look at the elementsin H for
any non-zero elements. This leads us to derive our initial algorithm
for Eden detection, which we call simple eden detection and denote as
s-eden-det (A [tp) (Algorithm 2).

Algorithm 2 s-eden-det (A,9): Simple Eden detection.
MjHip < 0if ij(g (W) & @)
VMiHip < 1ifigUg(w) = @)
whileH 6 H do

H «—H
H «— nh-elim(AH")
end while
if M[jH;; =0then
GoE « true
else
GoE « false
end if

return GoE

Unfortunately, s-eden-det (A () is not quite completé?. It can be
shown that M[H;; = 0 is a suffi cient but not necessary condition of
Eden. It is possible for cells within a cycle of G to have i [j -consistent
neighbors, but there does not exist a combination of possible neighbor-
hood configurations that can form a consistent chain. Figure 3 gives
an example of such a case, note that for a 1-d cellular automaton the
topology graph G contains one cycle which includes all cells. Clearly,
more processing is required once s-eden-det (A ) has converged and

Complex Systems, volume (year) 1-1+
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S-EDEN-DET(Az0,{0,0,1,1}) (1, 1 0,0} {1,0,0,1}

{ 0,1, n}

1 100 1011 {0111}
0010

00 1 0

Hwa |29 01 {0,0,0,1 {0,1,0,0)

10 0 0
00 00 ll(}l} {llll}}

/ {1,0,0, n}

), 1, {0,0,1,1}

Figure 3. Counter example for s-eden-det (A () (Algorithm 2). LEFT: The
resulting non-zero steady state of H where A3 is the elementary cellular
automaton rule 30 (according to Wolfram’s numbering scheme [16]) with
periodic boundary conditions and |V | = 4. RIGHT: The main configuration
transition graph for Asp, clearly @ = {0011} has no pre-image.

there does not exist aj €V such that MH;; = 0.

If for any possible neighborhood configuration (i.e., Hij = 1) we
can construct at least one pre-image, then we can conclude that ¢ is
not a Garden of Eden configuration. However, if it is found that a
valid pre-image cannot be constructed with C°(h;) = y; then we can
set Hij; = 0 and repeat s-eden-det (A [p) until a new steady state
is reached. This leads us to a second and more complete approach
eden-det (A(H).

In practice, we locate each instance of H;; = 1, and temporarily set
Wk 8 i(Hyj = 0. Thishastheefect of assuming that Co(hj) = yi. We
then apply oneiteration of nh-el im(A [H) ensuring that cell j €V is
visited last, then we examine the state of H;;. If Hi; = 1, then we
have no reason to reject our assumption. Otherwise, our assumption is
disproved via contradiction, so we set H;; = 0 and repeat the loop in
s-eden-det (A ). If none of the Hj; = 1 can be disproved, then it is
reasonable to conclude that @ has at least one pre-image (We show in
Section 6 that there are rare cases when this is an invalid conclusion).

We now have a two phase procedure. Phase 1, denoted by ph1(A [(H)

2Hence the name simple Eden detection.

Complex Systems, volume (year) 1-1+



An Effi cient Algorithm for the Detection of Eden 11

(Algorithm 3), is effectively the loop from s-eden-det (A [¢). Phase
2, denoted by ph2(A (H) (Algorithm 4), is the assumption testing pro-
cess described in the preceding paragraph. These two phases are then
combined to form our full Eden detection algorithm eden-det (A ,®)
(Algorithm 5). A implementation of eden-det (A (@) is provided as
part of analysis software developed by Warne [12]°.

Algorithm 3 ph1(A,H): Eden detection phase 1.
while H 8 H' do
H «H
H «— nh-elim(AH")
end while

Algorithm 4 ph2(A,H): Eden detection phase 2.
for all i eV do
for all j e =¥ do
if Hij = 1then
H™P  H
W((s8 j)HT—0
H'™P « nh-el im(A (H'™P)
if H{T?= 0then
Hij <0
return
end if
end if
end for
end for

Leaving thedetailsto Section 4, wesimply claim that eden-det (A [¢)
is guaranteed to complete in polynomial time. More specifically, it can
be shown to have a cubic worst casetime eff ciency. Furthermore, when
eden-det (A [®p) returns GoE = f alse, then H encodes the complete
set of pre-images to ¢! (except for rare cases when GoE = falseisa
false negative as shown in Section 6).

I 4. Time complexity analysis

In this section, we present the time complexity analysis for eden-
det (A,p) (Algorithm 5). We show that the number of operations for
the best caseis a linear function of the number of cells, the worst case
is shown to be cubic, and the average case is shown to be quadratic.

3This software, called GCALab, is an command line analysis tool designed for
parallel computation of graph cellular automata properties.
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Algorithm 5 eden-det (A,9): Eden detection.
ML Hiy < 0if i Ug(w) 6 @)
MOHiy — 1ifiGHg (W) = ¢)
repeat

call ph1(A,H)
if MjHi; = Othen
GoOE « true
return GoE
else
call ph2(A H)
GoE « false
end if
untilH = H
return GoE

Experimental results are also presented to reinforce theory with prac-
tice.

I 4.1 Time complexity of NH-ELIM (2 [H )

Thefundamental operation of eden-det (A ,@) iscleary nh-el im(A ,H).
From the pseudo code for nh-el im(A [H) (Algorithm 1), it isalso clear
that the number of operations executed by nh-el im(A,H) is a func-
tion of the number of cellsn = |[V|. We will show that this operation
isin O(n).

The four lines within the innermost loop of nh-el im(A [H) areonly
dependent on the number of neighborhood configurations. Without
loss of generality, we assume ¥ ]h;| = k, thus the construction of ©;
and ©; require searching only a single column of H. That is, Co =

co|Z¥| where ¢ = k is the number of operations to evaluate e.":".
The construction of ¢; is dependent only on the size of the ©’s, hence
C; < Co. Furthermore, the number of elements in H is equal the
number of dementsin ¢ < |X¥|. Thusthetotal operation count within
theinner loop is given by,

Cinner = 2Co + C( + || = 3|zk|‘ ‘ (3)

Given Equation (3) we can derive the total operation count for nh-
elim(AH).

XX

Cnh(n) Cinner (4

i=1j=1
= KCinnern
3k|ZX|nD

ll
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An Effi cient Algorithm for the Detection of Eden 13

Therefore Cyy (n) € O(n).

1 4.2 Best case

We now consider the best case time complexity of eden-det (A,9).
The best case occurs when there exist few possible i[j -consistent pairs
for some sub-sequence in @. Thisis very common in cellular automata
in which Langton’s A [6] is small. An example of thisis when A isthe
elementary cellular automaton rule 2, and @ has a contiguous sequence
of 1's.

In this special case, only ph1(A [H) (Algorithm 3) will be required.
Furthermore a column of zeros will developed very quickly as each
iteration will eliminate at least one possible configuration from the
unnatural area (due to few or no i[j-consistent neighborhood pairs),
that is| < |X¥| where | isthe number of iterations of the while loop.
Using the results from Equation (4) we have,

K"
Crest(N) = Cnu(N) (5)
i=1
[=¥|Cnw ()
3k|Z1?n

R

Therefore Cpest € Q(N).

1 4.3 Worst case

For the worst case we must consider the full expression for the number
of operations executed by eden-det (A ,9). Thisis given by,
0 O

X -X IR
Cops(n) = CnH(n)+ Cnh(n) (6)
t=1 l':1_{7 } i:1i:1{7 }
ph1(A H) ph2(A H)

where J and | simply denote the number of iterations taken by the
conditional loops. We require an upper bound on these loops.

In Section 3.3 we noted that the number of O'sin H can never de-
crease. Now we also note that if the number of 0's in H does not
increase after an execution of ph2(A[H) (Algorithm 4) then eden-
det (A,9) terminates with GoE = f alse. Hence for the worst case we
must assume that the number of 0's decreases by exactly one. Further-
more, every iteration of ph1(A H) will either increase the number of
0's, terminate eden-det (A,p) with GoE = true, or continue to an
iteration of ph2(AH). Since H € {01}/Z“I* " it must hold that

J+ 1)< 2D (7)

Complex Systems, volume (year) 1-1+



14 D. J. Warne, R. F. Hayward, N. A. Kelson, D. G. Mallet

We want to maximize the value of J as it has the greater efect
on the total number calls to nh-el im(A ,H). If we assume the upper

bound is reachable, then as| — 1 we have J — @n. We can apply
this result to Equation (6) to obtain an upper bound on Cqps(n),
\Zk\ D k

x XK
Cops(n) = HCnh(n) + Cnh (n)H

t=1 j=1i=1

1= O k o
N Cnh(n) + [VIIZ®CNnh (N)

zk | [
= B 024 0 Gy

Furthermore, we have already shown that Cyy € ©(n). Therefore
Cworst € O(ns)-

1 4.4 Average case

Best and worst case bounds are important but of limited practical
use without an indication of the likelihood of eden(A,p) instances
which cause these bounds to occur. In this section we will show, using
empirical data, that the average case is quadratic in time.

Consider Equation (6), the values affecting the computational com-
plexity are the number of iterations taken by the guard loops and
whether ph2(A [H) needs to be executed. As in Section 4.3, we will
denote the number of outer loops as J and the number of ph1(AH)
loops as | . Furthermore, we denote the number of iterations in which
ph2(A [H) is executed as K.

We took random eden(A ,¢) instances for [V|= n= 2/[2< i< 13,
where G is a single circuit. For each value of n over 1000 samples were
taken. The values of |,J, and K were counted for each sample. The
expected values computed from these samples are shown in Figure 4

From Figure 4 we can derivethe overall expected valuesE (I ) = 2(88,
E(J) = 106, and E(K) = 025. Soiit isreasonable to approximate the
average case as follows, |

X
Caverage(n)z Cnu(n) x Pr(=K)
i=1
0
X3 I 52l
+ U Cnu(n)+ Cnhu(n) x Pr(K)
i=1 j=1i=1
3 ; 01
= (8Cnw(n)) x 7+ 3Cnu(n)+ 27 INCnn(n) * 7
=X

4

NCny(n) + 3Cnn(n)0
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Figure 4. Expected Iteration Values. Based on 1000 random samples for each
number of cells.

Since Cnp (n) € O(n), the approximate overall expected time complex-
ity is Caverage(n) € ©(n?). Section 4.5 provides further experimentation
to validate this approximation.

1 4.5 Experimental results

For validation of the average case we took a new random sample of
1000 instances of eden(A,p) for [V| = n = 2/[2< i < 13. For each
sample the average runtime of 5 separate runs was taken. Results were
separated into two groups based on whether eden-det (A ,¢) returned
with GoE = true or GoE = false. The resulting average run times
are shown in Figure 5.

Note that on average the runtime when GoE = f alse is approxi-
mately 16 times the runtime when GoE = true. Thisisbecause only a
Garden-of-Eden configuration @, can cause eden-det (A ,@g) toreturn
before Phase 2 is executed, which will complete in O(n) operations.

To confirm that the curves in Figure 5 are in fact quadratic, we

can take the ratio R = Cg;;) where C(n) is the average runtime as
a function of the number of cells n. We would expect R = 4 for a
quadratic (i.e.,, doubling the input takes 4 times longer). Figure 6
shows the R for there samples taken for Figure 5.

From Figure 6 it is clear that R = 4 (Considering that R = 2 for
linear and R = 8 for cubic). This provides support for our approxi-

mate average time complexity for eden-det (A ,¢) that we provided in
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Section 4.4.

I 5. Comparison with Wuensche and Lesser’s reverse algorithm

In this section, we will compare the performance of eden-det against
the reverse algorithm developed by Wuensche and Lesser [20]. For the
sake of simplicity, we will restrict the comparison to the simplest form
of cellular automata; that of finite elementary cellular automata with
periodic boundary condition. As a result we must emphasize that the
following discussion and analysis relates specifically to Wuensche and
Lesser’s one dimensional reverse algorithm [20] and not Wuensche's
more general reverse algorithm which applies to random boolean net-
works and graph cellular automata [19, 17]. Theresultsof thisanalysis,
however, can certainly be generalized to the graph cellular automata
case.

For a finite elementary cellular automata with periodic boundary
conditions A, a configuration @' and a partial pre-image ¢!~ ' in which
the first i cell states are known, Wuensche and Lesser’s method is
described as follows [20]:

1. 1f g(@l- 10" '0) = g(¢l- 4 - 1pi1) 8 ¢!, then abandon the partial
pre-image. Resume derivation of next partial pre-image (go to step 5).

2. If g(olz 1l "10) 8 g(@i- 4 — 10} (1), then ¢l; ; can be uniquely deter-
mined. Proceed with next cell (go to step 1).

t-1

3. 1f (e el '10) = g(¢l- 1 — 1rgl) = ¢!, then ¢ ] could be 0 or 1.
Push the partial pre-image (g5 '@} ' (1Tg!™ ' 1) onto the pre-image
queue to be processed later and continue with <p};} = 0.

4. When i = n- 1 check that g(er-% 0" (9 ') 8 g(e_'ylop '@ ")
then abandon this pre-image, otherwise add to the valid pre-imagelist.

5. Take a new partial pre-image from the queue and continue processing
(step 1).

6. When the partial pre-image queue is empty, all possible pre-images
starting with the start values of ¢} (¢! ' are derived. Repeat for all
possible @5 gl .

Note that the primary purpose of Wuensche and Lesser’s method is
the construction of all valid pre-images, but it can be utilised directly
to compute the solution to the Eden problem. Clearly, we can assert
GoE = false as soon as a valid pre-image is found. We need not
computeall of them. GoE = true will be asserted when not pre-images
are found.
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I 5.1 Worst case complexity analysis

With a brief description of Wuensche and Lesser’s one dimensional
reverse algorithm, we can now show that the worst case computation
timeis not bounded by a polynomial in the number of cellsn. Consider
Algorithm 6 which depicts Wuensche and Lesser’s method modified for
solving the Eden problem without computing all pre-images.

Algorithm 6 rever se(A,9): Wuensche and Lesser’'s Reverse Algo-
rithm.
GoE « true

for all (p1lp2) € {(0L0) (0 M)(100)((11)} do
o7 — (p1lp2)
Q—{¢""
while Q6 {} do
¢ " — pop(Q)
x= g7 |- 1
for all i € [x(h]do
To — g(@-1 @ '10)
T —g(@ 1@ ')
if To = T1 6 (p,t then
break for loop
else
if To6 Ty then
if To= "' then
(pt—1 (_(Pt—1 U{O}
else
t— 1

)
end if
else
push(Qre™ " u{1})
q)‘l—’l - q)l—’l U{O}
end if
end if
end for
To — g(@_ Tk "o )
T —g(oh g\ "igh ")
if Tho= T4 then
GoE — false
return GoE
end if
end while
end for
return GoE

—¢ T u{1}

Let Cinner denote the number of operations performed on a single
iteration of the innermost loop in reverse(A,p). Without loss of
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generality, we will assume Cinner isa constant?.

Now, let Cy(n) denote the number of operations required to com-
plete ignoring partial pre-images already in Q before reaching the x-th
cell in the current pre-image. We can express C(n) as the following
recurrence relation,

X X
Cx(n) = Cinner + e(x) a(i)Ci(n)

i=x i=x+1

where e(x) = 0if To = Ty 8 @ ' otherwise e(x) = 1, and a(x) = 1 if
To= Ty = ¢} " otherwise a(x) = 0.

The worst case for Cx(n) occurs when the number of partial pre-
images being pushed onto the queue is every iteration. In this case, we
have M > x((a(i) = 1 Ae(i) = 1) and the recurrence relation becomes,

X0 X
Cx(n) = Cinner + Ci(n)D

i=x i=x+1

We can now solve this recurrence relation. First consider expanding
the Cx+ 1(n) term in the summation,

xX X
Cx(n) = Cinner + Ci(n)
i=x i=x+1
X
= Cinner + Cx+1(n) + Ci(n)
i=x i=x+2 '
= Cinner + Cinner + Cinner + Ci(n)
i=x+1 i=x+1 i=x+2
X
+ Ci(n)
i=x+2 '
xX X X ' X
= Cinner + Cinner + Ci(n) + Ci(n)
i=x i=x+1 i=x+2 i=x+2

X X
= Cinner + 2 Cinner + 2 Ci(n)0

i=x+1 i=x+2

4Clearly thisis not truein reality, but instead 3 < Cipper < 6
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Now, expending the Cy+ 2(n) term,

x x
Cx(n) =Cipper + 2 Cinner + 2 Ci(n)

i=x+1 i=x+2

x X
=Cinner + 2 Cinner + 2Cx+2(n) + 2 Ci(n)

i=x+1 i=x+3

X
=Cinner + 2Cinner + 2 Cinner

i=x+2 |
x xn ' x
+2 Cinner + Ci(n) +2 Ci(n)
i=x+2 x+3 i=x+3

X X
=Cinner + 2Cinner + 4 Cinner + 4 Ci(n)O

i=x+2 i=x+3
Repeating this process yields,
Cx(n) = Cinner + 2Cinner + 4Cinner + [+ 2n_XCinner

X
= Cinner 270
i=x
Theworst casefor r ever se(A,@) requires that C,(n) operations be
executed four times,

Cworst =4C2(n)

hence r ever se(A,p) isin O(2"). It is worth noting that this worst
case can only be achieved if the @ is a Garden-of-Eden configuration,
and the cell which determines this is the n-th cell. For example, ¢ =
(00101 1) for the elementary cellular automaton rule 2. However,
according to Wuensche and Lesser [20] the average case is orders of
magnitude better. We confirm this experimentally in Section 5.2.

1 5.2 Experimental comparison

We benchmarked eden-det (A ,®) against r ever se(A,¢). Each exper-
iment consisted of solving the Eden problem for 1000 random config-
urations. Experiments were performed for both eden-det (A,¢) and
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Figure 7. Comparison of eden-det (A ,@) against r ever se(A,9) using a ran-
dom sampling of configurations.

reverse(A,p) using all the elementary cellular automata with cell
counts ranging from 4 to 32. As shown in Figure 7, the benchmark av-
erage case is effectively the same order of magnitude for both methods.

The worst case for r ever se(A ,9) isonly approached for Garden-of-
Eden configurations which is nearly identical to a non Garden-of-Eden
configuration only difering in the last few cells. Thisis more likely to
be possible with sparse configurations (i.e., very few 1 states compared
with O states). If we restrict the random sample of test configurations
to that of sparse configurations, then the probability of selecting a
configuration which degrades the performance of r ever se(A ).

Figure8indicatesthat thebenchmark resultsare very diferent when
we restrict the configuration sample this way. Such cases place a lim-
itation on the usability of rever se(A @) for large cdll counts®. The
performance of eden-det (A,9), however, is hardly affected by such
sparse configurations.

The main difference in our approach which provides such a large
improvement in the worst case performance is the neighborhood elim-
ination step. This operation performance is not afected by shifts (or
rotations in higher dimension) in the same configuration, because it
treats each cell neighborhood independently of each other. As a re-
sult, eden-det (A ,p) provides a solution to the Eden problem which
is scalable to very large cellular automata. eden-det (A,@) could be
considered as a more stable alternative to Wuesnche and Lesser’sr e-
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Figure 8. Comparison of eden-det (A ,@) against r ever se(A,9) using a ran-
dom sampling of sparse configurations.

ver se(A,p) as the worst case is vastly improved without degrading
the average case.

I 6. Algorithm correctness

In this section, we discuss the correctness of the eden-det (A ,) in
solving the Eden problem for graph cellular automata. We are able
to show that eden-det (A,9p) is completely correct for graphs with
a single cycle. For graphs with more than one cycle it is possible for
incorrect resultsto bereturned®(i.e., false negatives), however we show
that these cases are rare.

It isfirst worth discussing the correctness of the solution when eden-
det (A ,@) returns with GoE = true. This result will never occur if @
has a pre-image (i.e., false positives cannot occur). This is because
elements in H are only ever set to 0 when there is no i[j -consistent
pair in a neighbor cell. If GoE = true is returned then at some point
there must have existed an i such that ¥ [H;; = 0 (i.e,, a cell has no
possible i[j -consistent neighborhood configurations). For ¢ to have a
pre-image each cell must have at least onei[j -consistent neighborhood

5As the cell count increases any configuration with a relatively small sparse
sub-sequence could render the Eden problem computationally intractable for re-
ver se(A ,9)

51f this were not so the title of this paper would be “P = NP”!
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configuration. Therefore only a true Garden-of-Eden configuration can
cause GoE = true to be returned.

When eden-det (A ,9) returns with GoE = f alse there are possible
false identifications. That is, it is possible for a Garden-of-Eden con-
figuration to cause GoE = f alse to be returned. However, this rare
case is only a possibility when the graph G has more than one cycle.

We will now show that eden-det (A,@) returning GoE = false is
always correct if G contains only one cycle. Consider H which has
reached a non-zero steady state after executing ph1(A,H). If we as-
sume a neighborhood configuration Hj; = 1 (see Section 3.3), and
carry out an iteration of nh-el im(A ,H ) we are essentially propagating
the assumption around the cycle of G. When this propagation returns
to i then there are only two possibilities: 1) The assumed H; is not
eliminated meaning a chain of i[j -consistent pairs can be constructed
(i.e., a pre-image can exist under thisassumption), and 2) T he assumed
H; is eliminated, hence y; cannot contribute to any pre-image. Since
eden-det (A ,@) only returns GoE = f alse when every element in H
has passed assumption testing, we can conclude this can only occur if
¢ does in fact have a possible pre-image. Therefore eden-det (A ,9) is
completely correct for G with a single cycle.

These correctness results for the single cycle (i.e., 1-d) case have also
been supported by experimental results. We executed eden-det (A ()
on the entire configuration space for all elementary cellular automata
where n = [4[8(16]. Each return value was validated via a brute force
search for a pre-image. This resulted in a 100% success rate.

Unfortunately, things are not so easy for G with multiple cycles.
The assumption testing method we apply in ph2(A [H) is really only
powerful enough to test consistency within a single cycle. It may be
possible for every H;; to pass the assumption test but any choice made
from one cycle breaks consistency in another. Hence a complete solu-
tion would requirelooking at pairs of cycles, triples of cyclesetc.”. This
is likely the result of the N P-complete nature of the Eden problem in
more than one dimension.

Again, we look to empirical data to show that in the majority of
cases the single cycle accuracy is all we need. This time over 1707000
random instances of eden(A L) (for afixed choice of rulesrepresenting
Wolfram Classes iii, and iii [15]) were taken as inputs®. Every result
was compared to a brute force approach.

We found that for Classi cellular automata (i.e., point attractors)
no false negatives ever seem to occur. Rules that fall under Class ii

70f course we do not have a rigorous proof of this. If we did, the title of this
paper would be “P 6 NP”!

8T hetopology of the graph G was equivalent to a dodecahedron. Since|V| = 20,
the complete configuration space is 220,
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(i.e.,, simple structures, maybe periodic) had a low number of false
negatives; around 0[01%. Class iii cellular automata (i.e., chaotic) are
a different story, with around 16% of cases in which eden-det (A ,9)
returned GoE = false were incorrect®. Over all samples, the false
negative rate was around 10%.

False negatives can be detected without resorting to a brute force
sweep. As previously stated in Section 3.3, the final state of H com-
pletely encodes all possible pre-images. Neighborhoods in H can be
stitched together using a method similar to Wuensche's general re-
verse algorithm [19], if no pre-image can be constructed then we have
detected a false negative. In light of this, our algorithm could also
be considered as a search reduction step to be used prior to invoking
Wuensche's general method. Combined, this would provide a com-
pletely correct and more effi cient method for constructing configuration
transition graphs.

L7 Conclusion

In this paper we have presented an efficient algorithm (i.e., average
case in ©(n?)), eden-det (A,H), for solving the Eden problem for
graph cellular automata. By changing the topology of the graph G,
the Eden problem can be solved for all classes of deterministic dis-
crete dynamical systems (e.g., regular cellular automata, and random
boolean networks). Thisanalysis provides a firm foundation for further
study of the global dynamics of discrete dynamical systems.

Appendix

LA Proof of Theorem 1

Proof. First consider the equality,
67 (wn) = §7 (wm)"
Given Définition 9, we can expand the above expression. This yields,

= WH(Whs = Ymis AIP(Ynp = Wy AY = hip Ay ==l
A A0{(WYmq = lIJ;nES/\Z= hjgAz= iEjs))D

91t isinteresting to note that it is only Class iii cellular automata that seem to
cause ph2(A [H) to be executed in the 1-d case.
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This can be reduced using predicate calculus,

=W (Whs = Wmis AP (Wnp = Yos ANip= "))
A 30 WYmig = W;n:g/\hjqz iEjs, )
=W (Whs = Wmsh
IPG(Wnp = Wns ANip = "ZL AWmg = WS Ahjq= 'EL))
= W61(IP0(Wns = Wins AWnp = Wy Ahip='Z
Alng = Yn'S Ahjq=Z))
= W(IpLA(Ynp = Wmgq Ahip = =L Abyjq = 'EL)
Now let CO(hi) = w, and CO(h;) = ym, hence C°(hip) = wnp and
C%hjiq) = Wmq
FE W 3IpLo(Wnip = Wmig Ahip = iEjs,/\hjq= iEjs)/\CO(hip)= Ynip
/\Co(hj q) = Wmi)
= Wi(3pa(hip = '=L Ahyq = '=L) AC(hip) = CO(hjq))

Thissatisfies our definition of i [j -consistency (i.e., Definition 8). There-
fore yn and Yy, areilj-consistent. m
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Appendix B

The Graph Cellular Automata

Laboratory

The majority of the computational tasks in this project were performed using
the Graph Cellular Automata Laboratory (GCALab) which was custom built for

this project. This Appendix provides a summary of this software.

B.1 Overview

The GCALab software is an interactive computational tool for the creation, sim-
ulation, analysis, and visualisation of graph cellular automata. GCALab is de-
signed to perform many graph cellular automata calculations in parallel while
maintaining an interactive command prompt to the user. This allows the user
to send a calculation to a back-end compute thread, and then continue to anal-
yse/visualise the results of another calculation.

GCALab is a free Open Source project and is licensed under the GNU Public
License Version 3. The latest version of the source code may be access via GitHub
at https://github.com/davidwarne/GCALab.git. The software is still very much

under development will new functionality expected in the future.
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B.2 Architecture

GCALab is based on a flexible modular Architecture. Every user interface com-
mand, and back-end compute operation is abstracted to a consistent function
callback interface. Due to design flexibility, new functionality may be easily im-
plemented and integrated into the whole system. GCALab has also been built
to take advantage of parallelism available to almost all modern day processors.
The interactive font-end acts like a “master” forwarding operations to back-end
compute threads (attached to a work-space). This allows the user to continue
to work and experiment while waiting for results to complete.The modular and

parallel architecture of GCALab is shown in Figure B.1.

Shell Command Back-end Compute
Registry Operation Registry
cmd 1 | cmd2 | cmdM | opl | op2 opM |
[ I <
K -
Commad Operation
Laokup Lookup Workspace Thread 0

Command Queue 0 Execution |
Unit
Master Thread —.| ck ez | el

e
Workspace Thread 1

Execution

I

l [ Unit |_ - = _I
I Command Queue 1 Execution !
I

L e

—

/“‘l

user Werkspace Thread K

I
I
I
I
| | | |
~

Command Queue K
l e @ Execution |
Unit '
~ s —.I c2 | c1
I —_ |

—

Figure B.1: Architecture of GCALab

From Figure B.1 it can be seen that the interactive shell runs as a “master”

thread. This simply parses user commands from the command line and forwards
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B.2 Architecture

the parse string to an execution unit. If the parsed string represents a back-
end compute operation then the execution unit pushes the operation (and input
arguments) to the command queue of the target workspace. Each workspace has
its own compute thread which will continuously poll the command queue for an
assigned task,when the task is complete it sends a signal back to “master” to
inform the user. Currently each workspace is designed to be a logically separate
compute module with does not communicate with other workspaces, this enables
linear speed-up to occur if one workspace is assigned per available CPU core.

In Figure B.1, it can been seen that all shell commands and back-end com-
pute operations are provided as callbacks. This is how GCALab’s extensible and
flexible architecture is realised.

An interactive shell command implements the following interface,

char (*f) (int argc, char** argv);

where argc is the number of command line arguments, and argv is a pointer
to the string arguments as parsed directly from the command prompt, the func-
tion should also return the macro GCALab_SUCCESS when the command has been
completed successfully, otherwise an appropriate error macro may be used. New
interactive shell commands may be created and added to GCALab using the
GCALab_Register_Command () function.

A back-end compute operation must implement the following interface.

char (*f) (unsigned char ws id, unsigned int trgt id,

int nparams, char** params, GCALabOutput **res);

where ws_id is a reference to the workspace that the command was queued to,
trgt_id is the reference to a cellular automata or result structure, nparams is
the number of command line arguments (excluding command name and target
id) supplied by the user, params is a pointer to the string arguments parsed
from the command prompt, and res is a pointer to a pointer of a results struc-
ture that must be created in the function call. Just as with shell commands
GCALab_SUCCESS should be returned on a valid completion and an appropriate

error macro returned otherwise.
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B. THE GRAPH CELLULAR AUTOMATA LABORATORY

Currently GCALab has only been tested on Linux/Unix based systems. How-
ever, the only dependencies that GCALab requires is POSIX threads, OpenGL

(any version >= 1:1), and FreeGlut'.

B.3 Modes of Execution

A user may start up GCALab in one of three modes. They are,

(1 Interactive Mode This is the standard mode of operation for GCALab.
This is a text command prompt style interactive “shell” to GCALab func-

tions.

(1 Batch Mode In this mode the user can supply a “script” file containing
a list of commands as the user would enter them in the interactive mode,
in batch mode GCALab will compute these in order “offline”. This is
especially useful when spanning many calculations across a resource such

as a compute cluster.

[1 Graphics Mode This mode runs an OpenGL Cellular Automata visual-
isation window. The user can interacted with this viewer in 3D and in
supports animation an interactive modification of cellular automata config-
urations. The user can also drop to a standard interactive shell for more

advanced commands.

B.4 Commands

GCALab is primarily a commandline based application. It implements three
kinds of commands: interactive shell commands, back-end compute operations,

and graphics mode commands. This Section lists these commands with a brief

IGCALab can be compiled without graphics support, in which case only POSIX threads is
required
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B.4 Commands

summary, the reader is referred to the GCALab documentation for further de-

tails?.

B.4.1 Interactive Shell Commands

Interactive shell commands manage the creation of workspaces, file 10, pushing

compute operations to workspace queues, and printing of results.

(1 new—work - Creates a new workspace with a given number of cellular au-

tomata slots.
[ print—work - Print the current workspace.
(] list-work - Print summary information of all workspaces.
(1 ch-work - Changes current workspace.

[J g-amd - Enqueues a back-end compute operation to the current command

queue.

[1 del-cmd - Sets a given queued back-end compute operation to NOP and

hence will be be ignored.
[0 exec-q - The current queue will start processing.

1 stop—qg - The current queue will pause after completion of the current op-

eration.
[ print-ca- Prints a given graph cellular automaton in the current workspace.

O print-st - Prints a graph cellular automaton evolution as a space-time

pattern.
[ print-res - Prints a given result data set.
[ quit - Exits GCALab.

[J help - Prints the help menu.

LAvailable on GitHub at https:// github.com/ davidwarne/ GCALab.git.
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B. THE GRAPH CELLULAR AUTOMATA LABORATORY

() 1ist-cmds - Prints available back-end compute compute operations.

B.4.2 Back-end Compute Operations

Back-end compute command execute a calculation on a given cellular automaton
and return the result back to workspace memory, back-end compute operations
always execute on compute threads asynchronously with the user interface (shell)
thread.

[ nop - No Operation.

() 1load- Loads a graph cellular automaton from file into the current workspace.
1 save - Save a graph cellular automaton or result data to file

[] sim- Simulates the given graph cellular automaton to a given time-step.

1 gca - Creates a new graph cellular automaton in the current workspace.

[0 entropy - Computes entropy measures of the given graph cellular automa-

ton.
(1 param - Computes complexity parameters such as Langton’s lambda.

1 pre - Computes pre-images of the current configuration of the given graph

cellular automaton.

[ freq- Computes state frequency histogram for each cell in the given graph

cellular automaton.

[ pop - Computes the non-quiescent population density over time.

B.4.3 Graphics Mode Commands

We running GCALab in graphics mode and extra set of single keystroke com-
mands and mouse controls enable to user to interact with a 3D visualisation of

the selected graph cellular automaton.
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B.5 Usage Example

B.4.3.1 Keyboard Commands

[J ¢ - Drop to the GCALab Shell.

0> - Switch viewer to next workspace.

[0 < - Switch viewer to previous workspace.

1] - Switch viewer to next graph cellular automaton (in the current workspace).

[1[ - Switch viewer to the next graph cellular automaton (int the current

workspace).
(1 Q- Exits GCALab.
() s - Steps the viewed graph cellular automaton forward in time.
[ 1 - Toggles colour mode between state-base and neighbourhood-based.
0 p - Toggles configuration edit mode.

[ m- Toggles mesh visibility.

B.4.3.2 Mouse Controls

[J Left-button Enables mouse to rotate the scene, or sets the selected cell to

a non-quiescent state when in edit mode.
(1 Middle-button Enables mouse to zoom the scene.

[ Right-button Enables mouse to translate the scene, or sets the selected

cell to a quiescent state when in edit mode.

B.5 Usage Example

This section presents a simple example of using the GCALab interactive shell.
The particular use case scenario is computing a rough approximation of the Shan-

non entropy for elementary cellular automaton rule 110.
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1. When executing GCALab in interactive mode the user is presented with

the interactive shell prompt.

+++ Welcome to Graph Cellular Automata Lab! +++

The Graph Cellular Automata Lab is a multi-threaded,
flexible, analysis tool for the exploration of cellular automata

defined on graphs.

Version: 0.19
Author: David J. Warne
School : School of Electrical Engineering and Computer Science,

The Queensland University of Technology, Brisbane, Australi.
Contact:  david.warne@qut.edu.au

url: https://github.com/davidwarne/GCALab.git

GCALab v 0.19 Copyright (C) 2013 David J. Warne
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it

under certain conditions.

Type 'help' to get started.

——>

2. First create a new workspace with enough memory for up to 10 graph

cellular automata.
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——>new-work 10

New Workspace created! ID = 0

. Next use the gca command to create an instance of rule 110 with 32 cells'.

-—>gca 0 -s 2 —eca 32 3 110

. Now compute the Shannon entropy based on 100 samples each with 10

time-steps.

-—>entropy 0 -n 100 -t 10 -e Shannon

. And finally print the results.

—-—>print-res 0
type: 0
id: (0):sS
data length: 1

0.867771

This example is designed to be a “Hello World” introduction to using GCALab;

it is by no means representative of all that is possible with the software or even
the commands used. For full details on all the commands refer to the GCALab

documentation.

Note that gca is actually a back-end compute operation, but we did not use the g-cmd

command. This is because the g-cmd is optional as the GCALab interpreter can tell the

dillerence, but a user may use it for clarity.
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Appendix C

Matlab® Code for the E-Test

This appendix provides the MATLAB® code listing for my implementation of
Székely and Rizzo’s E-Test for equality of distributions with high dimensional-
ity [51]. This code was applied in Section 4.2.3 to compute p-values for testing
if the dynamical distributions of cellular automata rule spaces are effected by

increaseing the genus of the topology.

The main function implements the k-sample E-test including the bootstrap
re-sampling method of deriving Pr(E > €). The code for this function is given
in Section C.1. The E-test code depends on the implementation of the k-sample
E-statistic, which in turn depends on the implementation of the 2-sample E-
statistic. The code for these dependencies are given in Sections C.2 and C.3

respectively.

The MATLAB® code in this appendix is based loosely on Székeley’s own
implementation in the statistical package R. Due to the method of memory al-
location use by Székeley, the R version was not suitale for the data set sizes
in my project. My MATLAB® implementation saves on memeory usage by re-
computing Euclidean distances as required, rather than computing once and stor-

ing all results.
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C. MATLAB® CODE FOR THE E-TEST

C.1 ksampleEtest.m

function [pval] = ksampleEtest (A, alpha)

o°

[PVAL] = KSAMPLEETEST (A,ALPHA) k-sample E-test

oe

for equality of equalitily of k empirical

oe

distributions.

-
Il

length (4) ;

3
Il

zeros (k,1);

(o
Il

zeros (k,1);
for i=1:k
[n(1),d(1)] = size(A{i});
end
if sum(d ~= d(1l)) > O
error ('Distirbutions must have the same dimensionality.');
end

d=d(l);

o°

size of pooled data

N = sum(n) ;

o°

pooled data

X = zeros(N,d);

o°

offsets
m = ones(k,1);
for i=2:k

m(i) = m(i-1)+n(i-1);
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C.1 ksampleEtest.m

o

% copy sample data

for i=1:k

end
% compute the observed test-statistic
EO0 = estatk(d);

% determine number of resamples required

B round (10" (abs (Logl0 (alpha) ) ) ) *10-1

E

zeros (B, 1) ;
% derive bootstrap estmate of P(En <= t)
for b=1:B
% generate a random permutation of the pooled sample
perm = randperm(N) ;
X(1:N,:) = X(pexm, :);
% generate new sample
for i=1:k
A{i}(l:n(1),:) = X(m(1): (m(1)+n(i)-1),:);
end
E(b) = estatk(d);
end
% P(En <= t) ~ 1/B sum(I(E0 <= t))

pval = (sum(E > EQ)+1)/ (B+1);
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C.2 estatk.m

function [etest] = estatk(d)

o°

[ESTAT] = ESTATK(A) computes the k-sample

o°

test statistic for the multivariate E-test

o°

for equal distributions

.

= length (A);
etest = 0;
for j=2:k
for i=1:3-1
etest = etest + estat2 (A{i},A{J});
end

end

C.3 estat2.m

function [etest] = estat2(X,Y)

% [ETEST] = ESTAT2 (X,Y) computes the two-sample

o)

% test statistic for the multivariate E-test for

o)

% equal distibutions.

[nl,dl] size (X);
[n2,d2] = size(Y);
if dl ~= d2

error ('Distributions must have the same dimensionality.');

end
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C.3 estat2.m

tl = 0;
for i=l1:nl
X i = repmat (X(i,:),[n2,1]);
tl = £l + sum(sum((X i - Y(1:n2,:))."2,2) .7 (1/2));
end
t2 = 0;
for i=l1:nl
X i = repmat (X(i,:),[nl,1]);
t2 = £2 + sum(sum((X 1 - X(1:nl,:))."2,2).7(1/2));

end

for i=1:n2

Y i = repmat(Y(i,:),[n2,1]);

t3 = £3 + sum(sum((¥ i - Y(1:n2,:))."2,2).7(1/2));
end
etest = ((nl*n2)/(nl+n2))* ...

((2.0/ (n1*n2))*tl - (1.0/nl*nl)*t2 - (1.0/n2*n2)*t3);
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Appendix D

Entropy Measure Comparisons

for Selected Rules
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D. ENTROPY MEASURE COMPARISONS FOR SELECTED
RULES

Entropy shift for rule 3838
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Figure D.1: Entropy Shift in life rule 3838.
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Input Entropy Vs. Time 4756
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Figure D.2: Entropy Shift in life rule 4756.
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RULES

Entropy shift for rule 4757
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Figure D.3: Entropy Shift in life rule 4757.
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Entropy shift for rule 6959
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Figure D.4: Entropy Shift in life rule 6959.
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D. ENTROPY MEASURE COMPARISONS FOR SELECTED
RULES

Entropy shift for rule 7701
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Figure D.5: Entropy Shift in life rule 7701.
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Entropy shift for rule 7747
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Figure D.6: Entropy Shift in life rule 7747.
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D. ENTROPY MEASURE COMPARISONS FOR SELECTED
RULES

Entropy shift for rule 5738
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Figure D.7: Entropy Shift in outer-totalistic rule 5738 with N = 80.
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Entropy shift for rule 21846

Figure D.8: Entropy Shift in outer-totalistic rule 21846 with N = 80.
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Entropy shift for rule 43966
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Figure D.9: Entropy Shift in outer-totalistic rule 43966 with N = 80.
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m shift for rule 54612
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Figure D.10: Entropy Shift in outer-totalistic rule 54612 with N = 80.
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Entropy shift for rule 27030
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Figure D.11: Entropy Shift in outer-totalistic rule 27030 with N = 1280.
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Entropy shift for rule 38230
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Figure D.12: Entropy Shift in outer-totalistic rule 38320 with N = 1280.
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Entropy shift for rule 55166
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Figure D.13: Entropy Shift in outer-totalistic rule 55166 with N = 1280.
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Entropy shift for rule 60074
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Figure D.14: Entropy Shift in outer-totalistic rule 60074 with N = 1280.
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Entropy shift for rule 7650
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Figure D.15: Entropy Shift in rule 7650 with N = 80.
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Entropy shift for rule 18018

Figure D.16: Entropy Shift in rule 18018 with N = 80.
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Entropy shift for rule 33022
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Figure D.17: Entropy Shift in rule 33022 with N = 80.
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Entropy shift for rule 35110

i

1

Figure D.18: Entropy Shift in rule 35110 with N = 80.



D. ENTROPY MEASURE COMPARISONS FOR SELECTED
RULES

Entropy shift for rule 1842
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Figure D.19: Entropy Shift in rule 1842 with N = 1280.
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Entropy shift for rule 3880
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Figure D.20: Entropy Shift in rule 3890 with N = 1280.
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Entropy shift for rule 3986
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Figure D.21: Entropy Shift in rule 3986 with N = 1280.

160



= 3
. ....e|
- m||
B garad| .
oz
* .
.+ *
o) - +

Input Entropy Vs. Time 7154

Figure D.22: Entropy Shift in rule 7154 with N = 1280.
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Entropy shift for rule 19226
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Figure D.23: Entropy Shift in rule 19226 with N = 1280.
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Entropy shift for rule 32248
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Figure D.24: Entropy Shift in rule 32248 with N = 1280.
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