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In this paper, a polynomial t ime algorithm is presented for solving the
Eden problem for graph cellular automata. The algorithm is based on
our neighborhood elimination operat ion which removes local neighbor-
hood configurat ions which cannot be used in a pre-image of the given
configurat ion. This paper presents a detailed derivat ion of our algo-
rithm from first principles, and a detailed complexity and accuracy
analysis is also given. In the case of t ime complexity, it is shown that
the average case t ime complexity of the algorithm is Θ(n2), and the
best and worst cases are Ω(n) and O(n3) respect ively. This represents
a vast improvement in the upper bound over current methods, without
compromising average case performance.

1. Int roduct ion

Cellular automata and more generally discrete dynamical systems are
powerful tools for modeling of complex phenomena [14]. This includes
applicat ions from physics, biology, and computer science [1]. Some
have even speculated that the study of cellular automata may lead to
a Grand Unified Theory of everything [13].

The study of the global dynamics of cellular automata (i.e., the

∗E-mail address: david.warne@qut .edu.au

Complex Systems, v ol u m e (year) 1–1+ ; year Complex Syst ems Publ icat ions, Inc.



2 D. J. Warne, R. F. Hayward, N. A . K elson, D. G. M allet

study of automata configurat ion t ransit ion graphs) can provide unique
insight into complex systems [20]. Effi cient construct ion of a configu-
rat ion t ransit ion graph typically requires a method to determine if the
given configurat ion is located on a leaf node of this graph [17].

This problem is known as the Eden problem, and has been shown
to be computat ionally int ractable for d-dimensional systems when d >
1. This is reflected in the worst case computat ional complexity of
algorithms that solve the Eden problem for higher dimensions (e.g.,
Wuensche’s general reverse algorithm [19]).

We present a new algorithm for approximately solving the Eden
problem for graph cellular automata (i.e., cellular automata on graphs[8,
7]); themost general form of determinist ic cellular automata. Although
there exist rare instances in which the algorithm will fail to ident ify
the non-existence of a pre-image, this is made up for by it ’s asymp-
tot ic complexity class which is O(n3) for the worst case and Θ(n2) for
the average case. This provides a method which is more computat ion-
ally feasible in the worst case than approaches based on Wuensche and
Lesser’s reverse algorithm [20] and Wuensche’s general reverse algo-
rithm [19] for the study of the global dynamics of higher dimensional
discrete dynamical systems with potent ially a large number of cells.

2. Background

2.1 Discrete dynamical systems

A regular cellular automaton can be defined as a lat t ice of finite state
automata, typically referred to as cells or sites. A state t ransit ion
funct ion defines how a cell updates its state based on it ’s current state
and the state of it ’s neighbors. Cells update synchronously in discrete
t ime intervals. The sequence of all cell states at a given t ime is referred
to as the automaton’s configuration.

Random boolean networks are binary cellular automata with one
crit ical difference; there isno requirement that cells be located on a reg-
ular lat t ice [19]. Instead, neighborhoods are const ructed via a random
wiring. This random wiring makes random boolean networks useful for
theoret ical biological models of genet ic regulatory networks [5, 18].

Graph cellular automata (also referred to as Generalized automata
networks [11]) are a generalizat ion of both cellular automata and ran-
dom boolean networks. For a graph cellular automaton, cell connec-
t ivity is defined by a connected graph. The class of graph cellular
automata contains regular cellular automata and random boolean net-
works as sub-classes. Cellular automata and random boolean networks
can be considered as discrete dynamical systems. Despite their sim-
ple construct ion, discrete dynamical systems have been shown to be

Complex Systems, vol u m e (year) 1–1+



An Effi cient A lgorit hm for the Det ect ion of Eden 3

capable of very complex behavior [16, 15, 6]. Furthermore, compu-
tat ionally int ractable, and formally undecidable problems relat ing to
discrete dynamical systems have been shown to exist [3, 9].

2.2 The Eden problem

A part icular problem of interest in the study of the global dynam-
ics of discrete dynamical systems is the so-called Eden problem (also
called the Predecessor existence problem [10, 2]). The Eden problem,
at tempts to determine, for a given automaton, if there exists a configu-
rat ion (i.e., pre-image) that will evolve to thegiven configurat ion in the
next t ime step. If the Eden problem is resolved to be f alse then the
configurat ion is called a Garden-of-Eden configurat ion (i.e., it has no
pre-image). Wuensche and Lesser studied the Eden problem in depth
and developed a reverse algorithm for one dimensional regular cellu-
lar automata [20]. Wuensche further generalized this approach to the
case of random boolean networks, which may also be applied to graph
cellular automata [19, 17]. While Wuensche and Lesser’s method per-
forms very well for small cellular automata, this methods upper bound
is O(2n) (as we will show in Sect ion 5.1) which prevents explorat ion of
large discrete dynamical systems.

For one-dimensional finite cellular automata the Eden problem is
in P, however for mult i-dimensional finite cellular automata the Eden
problem has been shown to be N P-Complete [10]. Even certain vari-
ants of the Eden problem in one-dimension (such as the Constrained
Eden problem [9]) have been shown to be N P-Complete. Assuming
that P 6= N P, then there does not exist a polynomial t ime algorithm
to solve the Eden problem for graph cellular automata.

If weassumeP 6= N P, then a completesolut ion to theEden problem
for graph cellular automata is computat ionally int ractable. However,
this does not exclude the possibility of a good solut ion (i.e., one that
can ident ify most Garden-of-Eden configurat ions) being achievable in
polynomial t ime. In thispaper, wepresent an algorithm which provides
a good solut ion to the Eden problem for graph cellular automata in
cubic t ime. By solving the problem for graph cellular automata we, by
extension, solve the problem for regular cellular automata and random
boolean networks. Furthermore, we can show that our algorithm solves
the Eden problem exact ly when the topology of the graph cellular
automaton is equivalent to a one dimensional finite cellular automaton
with periodic boundary condit ions.

2.3 Formal definit ion of graph cellular automata

In this sect ion, we provide a formal definit ion of graph cellular au-
tomata. Our formalism is based heavily on the work of Fates [4], Marr
et al. [8, 7], and Tomassini [11].

Complex Systems, v ol u m e (year) 1–1+



4 D. J. Warne, R. F. Hayward, N. A . K elson, D. G. M allet

We consider a graph cellular automaton to be defined as a 4-tuple
consist ing of a connected graph, a set of states, a set of neighborhood
mappings and a set of state t ransit ion funct ions. This is given formally
in Definit ion 1.

Definit ion 1. Let A = (G�Σ�U�Γ) define a graph cellular automaton,
where G = (V�E) is a graph with vert ices V ⊂ Z and edges E ⊆ V × V,
Σ is a finite set of symbols referred to as the alphabet , U = { hi : i ∈ V}
is the set of neighborhoods hi = { i } ∪ { j : (i�j ) ∈ E ∨ (j �i ) ∈ E} , and
Γ = { gi : i ∈ V} is theset of all state t ransit ion funct ionsgi : Σ |hi | → Σ .

In Definit ion 1, the vert ices of the graph G represent the cells of
the automaton A . Note that the neighborhood, hi , of each cell, i , is
effect ively the set of cells that are connected to cell i via the set of
edges E including i itself1.

At any t ime t each cell is associated with a state σ. For this we
define the mapping in Definit ion 2. From this we can const ruct the
global configurat ion of the automaton in Definit ion 3.

Definit ion 2. Let C : V → Σ be a mapping from a cell i ∈ V to a
state σ ∈ Σ such that Ct (i ) represents the state of cell i at t ime t. Let
Ct(hi ) ∈ Σ |hi | be the neighborhood configuration of i .

Definit ion 3. Let φt = { Ct (i ) : i ∈ V} be the configurat ion of the
automaton A at t ime t. φt ∈ Φ where Φ is the set of all possible
configurat ions of A .

Finally we define the evolut ion of a graph cellular automaton as the
sequence of configurat ions generated by repeated synchronous applica-
t ion of the local state t ransit ion funct ions. This is given as a recurrence
relat ion expressed in terms of the global configurat ion t ransit ion func-
t ion. This is given in Definit ion 4.

Definit ion 4. Let the recurrence relat ion φt+ 1 = f (φt )�t ≥ 0 be the
evolut ion of A , where f : Φ → Φ is the global configurat ion transi-
t ion funct ion f (φt ) = { (φt�φt+ 1) : φt = { Ct (i ) : i ∈ V } ∧ φt+ 1 =
{ gi (Ct (hi )) : i ∈ V } } .

We can now define formally an instance of the Eden problem.

Definit ion 5. Problem: The Eden problem (eden).
Instance: A graph cellular automaton A and a configurat ion φ ∈ Σ |V | .
Quest ion: Does there exist an init ial configurat ion φ0 such that φ =
f (φ0) under the evolut ion of A ?

1Note that the const ruct ion of hi in Definit ion 1 assumes an undirect ed graph,
t he definit ion for a direct ed graph would be hi = { i } ∪ { j : (j �i ) ∈ E} .

Complex Systems, vol u m e (year) 1–1+



An Effi cient A lgorit hm for the Det ect ion of Eden 5

In Sect ion 3, we will rely on the formalism given in this sect ion
to derive a polynomial t ime algorithm which provides the solut ion to
eden(A ,φ) in all but rare circumstances.

3. The algorithm

In this sect ion, we present a detailed derivat ion of our Eden detection
algorithm, denoted by eden-det (A �φ). There is a number of steps
involved in this derivat ion. First ly, some new mathemat ical construc-
t ions aredefined. Then the fundamental operat ion of eden-det (A �φ),
the neighborhood elimination operat ion, denoted by nh-el im(A �H ),
is derived. After present ing nh-el im(A �H ) a simple Eden detection
algorithm is provided, denoted by s-eden-det (A �φ). Using s-eden-
det (A �φ) as a start ing point we then derive a two phase construct ion
of eden-det (A �φ).

3.1 Preliminaries

The graph cellular automata formalism given in Sect ion 2.3 is not quite
suffi cient for us to express our Eden detect ion algorithm clearly. In
this sect ion, we present the definit ions and notat ions that form the
mathemat ical foundat ions of the algorithm. All definit ions, notat ions,
and theorems in this sect ion assume the formalism in Sect ion 2.3 to be
given, and hence symbols used from Sect ion 2.3 will not be re-defined.

We will assume, without loss of generality, that ∀i ∈ V�|hi | = k.
This is done purely for notat ional convenience. All of the concepts
applied in the construct ion of our algorithm can be extended trivially
to non-uniform |hi |. Note that we do not assume a uniform update
rule across all cells∀i�j ∈ V�gi = gj .

To describe our algorithm, we need a method of consistent ly refer-
ring to a specific neighborhood configurat ion (see Sect ion 3.2). The
notat ion for this reference is given in the following definit ion.

Definit ion 6. Assume that some ordering scheme has been applied to
the set of all neighborhood configurat ionsΣk. Subject to this ordering,
the nth neighborhood configurat ion is denoted by ψn ∈ Σk.

Note that the actual ordering scheme is arbit rary, all we require is
an index into the possible neighborhood configurat ion space. For our
implementat ion we simply map each configurat ion to its raw binary
representat ion.

It is necessary for us to specify a set that contains all the cells that
join adjacent neighborhoods. We refer to this set using the notat ion
iΞj , and it is defined in Definit ion 7.

Definit ion 7. Let iΞj = { i } ∪ { j } ∪ { x : ((x�i ) ∈ E ∨ (i�x) ∈ E) ∧
((x�j ) ∈ E ∨ (j �x) ∈ E)} denote the boundary set of hi and hj . The
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Figure 1. Example of i�j -consistency where i = 3, j = 6, and iΞj = { 3�4�5�6} .
LEFT: ψn is not i�j -consistent with respect to ψm since they cause an incon-
sistent state in the boundary set (i.e., cell 5). RIGHT: A modificat ion to ψm

allows consistency across the boundary set , hence ψn is now i�j -consistent
to ψm.

nth boundary cell, x ∈ V, is denoted by x = iΞj
n .

The basis of our algorithm is the detect ion and removal of neighbor-
hood configurat ions which cannot exist in any pre-image of φt due to
an inconsistency across boundary sets.

Definit ion 8. If thereexistsan init ial configurat ion φ0 such that C0(hi ) =
ψn and C0(hj ) = ψm, then ψn is said to be i�j -consistent with respect
to ψm.

The concept of i�j -consistency is readily visualized as shown in Fig-
ure 1. However, it would be preferable if a direct method of evaluat ing
the i�j -consistency of two neighborhood configurat ions could be found.
The funct ion we require is given in Definit ion 9.

Definit ion 9. Let θ
iΞ j

i : Σk → Σ | iΞ j | be a funct ion which maps neigh-
borhood configurat ions of hi to the configurat ion of the boundary set
iΞj . The funct ion is defined as θ

iΞ j

i = { (ψn�ψ′
n) : ψ′

n�s = ψn�q ∧ y =
hi�q∧y = i Ξj

s ∧s ∈ [0�iΞj )} .

The definit ion of θ given in Definit ion 9 may seem strange, but it
leads us into Theorem 1 which is a vital component of our algorithm.

Complex Systems, vol u m e (year) 1–1+
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Theorem 1. If θ
iΞ j

i (ψn) = θ
iΞ j

j (ψm) then ψn is i�j -consistent with re-
spect to ψm.

A formal proof is given in Appendix A.

3.2 Neighborhood eliminat ion

We can now formulate the core operat ion of our Eden detect ion al-
gorithm. This core operat ion we call neighborhood elimination and
denote it as nh-el im(A ,H ). As the name may suggest , its funct ion is
to eliminateneighborhood configurat ionswhich cannot bea component
of any pre-image of the automaton configurat ion in quest ion.

To explain how we perform this operat ion, we first consider the
matrix H ∈ { 0�1} |Σ |k× |V | where

Hi�j =

(
0� impossible for ψi = C0(hj )

1� otherwise
� (1)

It is important to note in Equat ion (1), that H i�j = 1 should not be
interpreted asψi = C0(hj ) in at least one pre-image. Instead, Hi�j = 1
means we cannot yet determine if ψi = C0(hj ) or not . This is not the
case for Hi�j = 0, which indicates that we have proven that there is no
pre-image such that ψi = C0(hj ).

The algorithm can be described as follows: Consider the case in
which we have already determined that H i�j = 0 for specific i�j by
techniques described in Sect ion 3.3. If we start with an arbit rary cell
neighborhood hi then the column vector H∗�i provides us with the
neighborhood configurat ions st ill under considerat ion. If Hn�i = 1, but
the neighborhood configurat ion ψn is not i�j -consistent with respect to
any candidate configurat ions in one or more connected neighborhoods
hj , then ψn can be excluded from the realm of possible configurat ions
for hi asat least oneboundary cell statecannot besat isfied consistent ly.
By updat ing H∗�i this will affect the validity of other configurat ions, so
we repeat the process for every neighborhood.

Theorem 1 provides us with a comparison operat ion for test ing the
i�j -consistency of two neighborhood configurat ions. With the func-
t ion θ

iΞ j

i as defined in Sect ion 3.1, we arrive at nh-el im(A �H ) (i.e.,
Algorithm 1).

One step of nh-el im(A �H ) is shown in Figure 2 displaying contents
of the data structures Θi ,Θj , and ζi along with the effect on the state
of H . It should be noted that although the example in Figure 2 is for
a small 1-d cellular automaton with k = 3, nh-el im(A �H ) is general
enough to operate on graph cellular automata.

One part icularly useful property of nh-el im(A �H ) is that the num-
ber of zero elements in H can never decrease. Therefore, repeat ing
nh-el im(A �H ) on H in an iterat ive fashion will eventually result in
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A lgor i t hm 1 nh-el im(A ,H ): Neighborhood eliminat ion.
for al l i ∈ V do

for al l j ∈ hi − { i } do

Θi ←
n

x : x ∈ θ
iΞ j

i (ψp) ∧Hp�i = 1
o

Θj ←
n

x : x ∈ θ
iΞ j

i (ψq) ∧Hq�j = 1
o

ζi ← { x : x ∈ Θi ∧x 6∈ Θj }

∀p�Hp�i ← 0 if θ
iΞ j

i (ψp) ∈ ζi

end for
end for

Figure 2. One Step of nh-el im(A �H ). The upper left mat rix is H at the start
of the iterat ion, after the iterat ion is completed H4�k is set to 0, result ing in
the lower left mat rix H ′ .

an array H in which only configurat ions i�j -consistent with respect to
all neighbors are candidates for pre-image const ruct ion. This property
also enables us to put an upper bound on the number of iterat ions
required, which aids us in our complexity analysis (see Sect ion 4).

3.3 Garden of Eden detect ion

In this sect ion, we will describe our Eden detect ion algorithm (eden-
det (A ,φ)) in full. Throughout this descript ion we rely heavily on the
formalism in Sect ion 2.3 and Sect ion 3.1.

So far we have assumed that H is not all ones or all zeros, but we
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have not ment ioned how H is init ialized. If we are given an instance
of eden(A ,φ), we can prove the impossibility of some neighborhood
configurat ions explicit ly by using φ and the state t ransit ion funct ions
gi ∈ Γ, that is,

H i�j =

(
0� gj (ψi ) 6= φj

1� gj (ψi ) = φj
� (2)

In Sect ion 3.2, it was stated for nh-el im(A �H ) (Algorithm 1) that
the number of zeros in H can never decrease. Therefore, repeated
invoking of nh-el im(A �H ) is guaranteed to converge to a steady state.

Once H is init ialized, we can repeatedly operate the neighborhood
eliminat ion algorithm on H . Clearly, if for any column ∀i�Hi�j = 0
during a iterat ion, then there is no possibleψi that can be selected for
hj in any pre-image. Furthermore, the steady state that H will con-
verge to in this case will be∀i�j �Hi�j = 0. Therefore we can conclude
that φ is a Garden of Eden configurat ion.

We might also assume that all Garden of Eden configurat ions will
cause the condit ion, ∀i�Hi�j = 0. Therefore, we could simply iterate
unt il a steady state is reached and then look at the elements in H for
any non-zero elements. This leads us to derive our init ial algorithm
for Eden detect ion, which we call simple eden detection and denote as
s-eden-det (A �φ) (Algorithm 2).

A lgor i t hm 2 s-eden-det (A ,φ) : Simple Eden detect ion.
∀i�j �Hi�j ← 0 if i�j �(gj (ψi ) 6= φj )
∀i�j �Hi�j ← 1 if i�j �(gj (ψi ) = φj )
whi le H 6= H ′ do

H ′ ← H
H ← nh-el im(A �H ′ )

end whi le
i f ∀i�j �Hi�j = 0 t hen

GoE ← tr ue
else

GoE ← f alse
end i f
r et ur n GoE

Unfortunately, s-eden-det (A �φ) is not quite complete2. It can be
shown that ∀i�Hi�j = 0 is a suffi cient but not necessary condit ion of
Eden. It is possible for cells within a cycle of G to have i�j -consistent
neighbors, but there does not exist a combinat ion of possible neighbor-
hood configurat ions that can form a consistent chain. Figure 3 gives
an example of such a case, note that for a 1-d cellular automaton the
topology graph G contains one cycle which includes all cells. Clearly,
more processing is required once s-eden-det (A �φ) has converged and
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Figure 3. Counter example for s-eden-det (A �φ) (Algorithm 2). LEFT: The
result ing non-zero steady state of H where A 30 is the elementary cellular
automaton rule 30 (according to Wolfram’s numbering scheme [16]) with
periodic boundary condit ions and |V | = 4. RIGHT: The main configurat ion
t ransit ion graph for A30, clearly φ = { 0�0�1�1} has no pre-image.

there does not exist a j ∈ V such that ∀i�Hi�j = 0.
If for any possible neighborhood configurat ion (i.e., H i�j = 1) we

can construct at least one pre-image, then we can conclude that φ is
not a Garden of Eden configurat ion. However, if it is found that a
valid pre-image cannot be constructed with C0(hj ) = ψi then we can
set Hi�j = 0 and repeat s-eden-det (A �φ) unt il a new steady state
is reached. This leads us to a second and more complete approach
eden-det (A �H ).

In pract ice, we locate each instance of Hi�j = 1, and temporarily set
∀k 6= i�Hk�j = 0. This has the effect of assuming that C0(hj ) = ψi . We
then apply one iterat ion of nh-el im(A �H ) ensuring that cell j ∈ V is
visited last , then we examine the state of Hi�j . If H i�j = 1, then we
have no reason to reject our assumpt ion. Otherwise, our assumpt ion is
disproved via contradict ion, so we set Hi�j = 0 and repeat the loop in
s-eden-det (A �φ). If none of the Hi�j = 1 can be disproved, then it is
reasonable to conclude that φ has at least one pre-image (We show in
Sect ion 6 that there are rare cases when this is an invalid conclusion).

Wenow havea two phaseprocedure. Phase1, denoted by ph1(A �H )

2Hence the name simple Eden detection.
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(Algorithm 3), is effect ively the loop from s-eden-det (A �φ) . Phase
2, denoted by ph2(A �H ) (Algorithm 4), is the assumpt ion test ing pro-
cess described in the preceding paragraph. These two phases are then
combined to form our full Eden detection algorithm eden-det (A ,φ)
(Algorithm 5). A implementat ion of eden-det (A �φ) is provided as
part of analysis software developed by Warne [12]3.

A lgor i t hm 3 ph1(A ,H ): Eden detect ion phase 1.

whi le H 6= H ′ do
H ′ ← H
H ← nh-el im(A �H ′ )

end whi le

A lgor i t hm 4 ph2(A ,H ): Eden detect ion phase 2.
for al l i ∈ V do

for al l j ∈ Σ | k| do
i f H i�j = 1 t hen

H tmp ← H
∀s�(s 6= j )�H tmp

i�s ← 0
H tmp ← nh-el im(A �H tmp)
i f H tmp

i�j = 0 t hen
Hi�j ← 0
r et ur n

end i f
end i f

end for
end for

Leaving thedetails to Sect ion 4, wesimply claim that eden-det (A �φ)
is guaranteed to complete in polynomial t ime. More specifically, it can
beshown to have a cubic worst case t imeeffi ciency. Furthermore, when
eden-det (A �φ) returns GoE = f alse, then H encodes the complete
set of pre-images to φt (except for rare cases when GoE = f alse is a
false negat ive as shown in Sect ion 6).

4. T ime complexity analysis

In this sect ion, we present the t ime complexity analysis for eden-
det (A ,φ) (Algorithm 5). We show that the number of operat ions for
the best case is a linear funct ion of the number of cells, the worst case
is shown to be cubic, and the average case is shown to be quadrat ic.

3T his software, called GCALab, is an command line analysis t ool designed for
parallel computat ion of graph cellular aut omata propert ies.
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A lgor i t hm 5 eden-det (A ,φ) : Eden detect ion.
∀i�j �Hi�j ← 0 if i�j �(gj (ψi ) 6= φj )
∀i�j �Hi�j ← 1 if i�j �(gj (ψi ) = φj )
r epeat

cal l ph1(A ,H )
i f ∀i�j �Hi�j = 0 t hen

GoE ← tr ue
r et ur n GoE

else
cal l ph2(A ,H )
GoE ← f alse

end i f
unt i l H ′ = H
r et ur n GoE

Experimental results are also presented to reinforce theory with prac-
t ice.

4.1 T ime complexity of NH-ELIM (A �H )

Thefundamental operat ion of eden-det (A ,φ) iscleary nh-el im(A ,H ).
From the pseudo code for nh-el im(A �H ) (Algorithm 1), it is also clear
that the number of operat ions executed by nh-el im(A ,H ) is a func-
t ion of the number of cells n = |V |. We will show that this operat ion
is in Θ(n).

The four lines within the innermost loop of nh-el im(A �H ) are only
dependent on the number of neighborhood configurat ions. Without
loss of generality, we assume ∀i�|hi | = k, thus the construct ion of Θi

and Θj require searching only a single column of H . That is, CΘ =

c0|Σk| where c0 ≈ k is the number of operat ions to evaluate θ| iΞ j |
i .

The const ruct ion of ζi is dependent only on the size of the Θ’s, hence
Cζ ≤ CΘ . Furthermore, the number of elements in H is equal the
number of elements in ζi ≤ |Σk|. Thus the total operat ion count within
the inner loop is given by,

Cinner = 2CΘ + Cζ + |ζ| ≈ 3|Σk|� (3)

Given Equat ion (3) we can derive the total operat ion count for nh-
el im(A �H ).

CN H (n) =
nX

i= 1

kX

j = 1

Cinner (4)

= kCinner n

≈ 3k|Σk|n�

Complex Systems, vol u m e (year) 1–1+



An Effi cient A lgorit hm for the Det ect ion of Eden 13

Therefore CN H (n) ∈Θ(n).

4.2 Best case

We now consider the best case t ime complexity of eden-det (A ,φ).
The best case occurs when there exist few possible i�j -consistent pairs
for some sub-sequence in φ. This is very common in cellular automata
in which Langton’s λ [6] is small. An example of this is when A is the
elementary cellular automaton rule 2, and φ has a cont iguous sequence
of 1’s.

In this special case, only ph1(A �H ) (Algorithm 3) will be required.
Furthermore a column of zeros will developed very quickly as each
iterat ion will eliminate at least one possible configurat ion from the
unnatural area (due to few or no i�j -consistent neighborhood pairs),
that is I < |Σk| where I is the number of iterat ions of the while loop.
Using the results from Equat ion (4) we have,

Cbest (n) =
|Σ k |X

i= 1

CN H (n) (5)

= |Σk|CN H (n)

≈ 3k|Σk|2n

Therefore Cbest ∈Ω(n).

4.3 Worst case

For the worst case we must consider the full expression for the number
of operat ions executed by eden-det (A ,φ). This is given by,

Cops(n) =
JX

t= 1

�

�
�
�
�
�
�

IX

i= 1

CN H (n)

| {z }
ph1(A �H )

+
|V |X

j = 1

|Σ k |X

i= 1

CN H (n)

| {z }
ph2(A �H )

�

�
�
�
�
�
�

(6)

where J and I simply denote the number of iterat ions taken by the
condit ional loops. We require an upper bound on these loops.

In Sect ion 3.3 we noted that the number of 0’s in H can never de-
crease. Now we also note that if the number of 0’s in H does not
increase after an execut ion of ph2(A �H ) (Algorithm 4) then eden-
det (A ,φ) terminates with GoE = f alse. Hence for the worst case we
must assume that the number of 0’s decreases by exact ly one. Further-
more, every iterat ion of ph1(A �H ) will either increase the number of
0’s, terminate eden-det (A ,φ) with GoE = tr ue, or cont inue to an
iterat ion of ph2(A �H ). Since H ∈ { 0�1} |Σ k |× n, it must hold that

J (I + 1) ≤ |Σk|n� (7)
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We want to maximize the value of J as it has the greater effect
on the total number calls to nh-el im(A ,H ). If we assume the upper

bound is reachable, then as I → 1 we have J → |Σ k |
2 n. We can apply

this result to Equat ion (6) to obtain an upper bound on Cops(n),

Cops(n) ≤

|Σ k|
2 nX

t= 1

�

�CN H (n) +
|V |X

j = 1

|Σ k |X

i= 1

CN H (n)

�

�

=
|Σk|

2
n

�
CN H (n) + |V ||Σk|CN H (n)

�

=
|Σk|

2

�
|Σk|n2 + n

�
CN H (n)�

Furthermore, we have already shown that CN H ∈ Θ(n). Therefore
Cwor st ∈O(n3).

4.4 Average case

Best and worst case bounds are important but of limited pract ical
use without an indicat ion of the likelihood of eden(A ,φ) instances
which cause these bounds to occur. In this sect ion we will show, using
empirical data, that the average case is quadrat ic in t ime.

Consider Equat ion (6), the values affect ing the computat ional com-
plexity are the number of iterat ions taken by the guard loops and
whether ph2(A �H ) needs to be executed. As in Sect ion 4.3, we will
denote the number of outer loops as J and the number of ph1(A �H )
loops as I . Furthermore, we denote the number of iterat ions in which
ph2(A �H ) is executed as K .

We took random eden(A ,φ) instances for |V | = n = 2i �2 ≤ i ≤ 13,
where G is a single circuit . For each value of n over 1000 samples were
taken. The values of I ,J , and K were counted for each sample. The
expected values computed from these samples are shown in Figure 4

From Figure4 wecan derive theoverall expected valuesE(I ) = 2�88,
E(J ) = 1�06, and E(K ) = 0�25. So it is reasonable to approximate the
average case as follows,

Caver age(n) ≈

 
3X

i= 1

CN H (n)

!

× Pr(¬K )

+

�

�
3X

i= 1

CN H (n) +
|V|X

j = 1

|Σ k |X

i= 1

CN H (n)

�

� × Pr(K )

= (3CN H (n)) ×
3
4

+
�
3CN H (n) + |Σk|nCN H (n)

�
×

1
4

=
|Σk|

4
nCN H (n) + 3CN H (n)�
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Figure 4. Expected Iterat ion Values. Based on 1000 random samples for each
number of cells.

Since CN H (n) ∈Θ(n), the approximate overall expected t ime complex-
ity is Caver age(n) ∈Θ(n2). Sect ion 4.5 provides further experimentat ion
to validate this approximat ion.

4.5 Experimental results

For validat ion of the average case we took a new random sample of
1000 instances of eden(A ,φ) for |V | = n = 2i �2 ≤ i ≤ 13. For each
sample the average runt ime of 5 separate runs was taken. Results were
separated into two groups based on whether eden-det (A ,φ) returned
with GoE = tr ue or GoE = f alse. The result ing average run t imes
are shown in Figure 5.

Note that on average the runt ime when GoE = f alse is approxi-
mately 16 t imes the runt ime when GoE = tr ue. This is because only a
Garden-of-Eden configurat ion φe can cause eden-det (A ,φe) to return
before Phase 2 is executed, which will complete in O(n) operat ions.

To confirm that the curves in Figure 5 are in fact quadrat ic, we

can take the rat io R = C(2i+ 1 )
C(2i ) where C(n) is the average runt ime as

a funct ion of the number of cells n. We would expect R ≈ 4 for a
quadrat ic (i.e., doubling the input takes 4 t imes longer). Figure 6
shows the R for there samples taken for Figure 5.

From Figure 6 it is clear that R ≈ 4 (Considering that R ≈ 2 for
linear and R ≈ 8 for cubic). This provides support for our approxi-
mate average t ime complexity for eden-det (A ,φ) that we provided in
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Figure 5. Run t imes for eden-det (Algorithm 5).

Figure 6. Rat io of run t imes C(2n)�C(n)).
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Sect ion 4.4.

5. Comparison with Wuensche and Lesser’s reverse algorit hm

In this sect ion, we will compare the performance of eden-det against
the reverse algorithm developed by Wuensche and Lesser [20]. For the
sake of simplicity, we will rest rict the comparison to the simplest form
of cellular automata; that of finite elementary cellular automata with
periodic boundary condit ion. As a result we must emphasize that the
following discussion and analysis relates specifically to Wuensche and
Lesser’s one dimensional reverse algorithm [20] and not Wuensche’s
more general reverse algorithm which applies to random boolean net-
worksand graph cellular automata [19, 17]. The resultsof thisanalysis,
however, can certainly be generalized to the graph cellular automata
case.

For a finite elementary cellular automata with periodic boundary
condit ions A , a configurat ion φt and a part ial pre-imageφt− 1 in which
the first i cell states are known, Wuensche and Lesser’s method is
described as follows [20]:

1. I f g(φt− 1
i− 1�φt− 1

i �0) = g(φt
i− 1 − 1�φt

i �1) 6= φt
i , t hen abandon the part ial

pre-image. Resume derivat ion of next part ial pre-image (go to step 5).

2. I f g(φt− 1
i− 1�φt− 1

i �0) 6= g(φt
i− 1 − 1�φt

i �1), then φt− 1
i+ 1 can be uniquely deter-

mined. Proceed with next cell (go to step 1).

3. I f g(φt− 1
i− 1�φt− 1

i �0) = g(φt
i− 1 − 1�φt

i �1) = φt
i , t hen φt− 1

i+ 1 could be 0 or 1.
Push the part ial pre-image (φt− 1

0 �φt− 1
1 �����φt− 1

i �1) onto the pre-image
queue to be processed later and cont inue with φt− 1

i+ 1 = 0.

4. When i = n − 1 check that g(φt− 1
n− 2�φt− 1

n− 1�φt− 1
0 ) 6= g(φt− 1

n− 1�φt− 1
0 �φt− 1

1 )
then abandon this pre-image, otherwise add to the valid pre-image list .

5. Take a new part ial pre-image from the queue and cont inue processing
(step 1).

6. When the part ial pre-image queue is empty, all possible pre-images
start ing with the start values of φt− 1

0 �φt− 1
1 are derived. Repeat for all

possible φt− 1
0 �φt− 1

1 .

Note that the primary purpose of Wuensche and Lesser’s method is
the construct ion of all valid pre-images, but it can be ut ilised direct ly
to compute the solut ion to the Eden problem. Clearly, we can assert
GoE = f alse as soon as a valid pre-image is found. We need not
compute all of them. GoE = tr ue will be asserted when not pre-images
are found.
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5.1 Worst case complexity analysis

With a brief descript ion of Wuensche and Lesser’s one dimensional
reverse algorithm, we can now show that the worst case computat ion
t ime is not bounded by a polynomial in the number of cells n. Consider
Algorithm 6 which depicts Wuensche and Lesser’s method modified for
solving the Eden problem without comput ing all pre-images.

A lgor i t hm 6 r ever se(A ,φ) : Wuensche and Lesser’s Reverse Algo-
rithm.

GoE ← tr ue
for al l (p1�p2) ∈ { (0�0)�(0�1)�(1�0)�(1�1)} do
φt− 1 ← (p1�p2)
Q ← {φt− 1}
whi le Q 6= { } do
φt− 1 ← pop(Q)
x = |φt− 1| − 1
for al l i ∈ [x�n] do

T0 ← g(φt− 1
i− 1�φt− 1

i �0)
T1 ← g(φt− 1

i− 1�φt− 1
i �1)

i f T0 = T1 6= φt
i t hen

break for loop
else

i f T0 6= T1 t hen
i f T0 = φt− 1

i t hen
φt− 1 ← φt− 1 ∪ { 0}

else
φt− 1 ← φt− 1 ∪ { 1}

end i f
else

push(Q�φt− 1 ∪ { 1} )
φt− 1 ← φt− 1 ∪ { 0}

end i f
end i f

end for
Tn ← g(φt− 1

n− 1�φt− 1
n �φt− 1

1 )
T1 ← g(φt− 1

n �φt− 1
1 �φt− 1

2 )
i f Tn = T1 t hen

GoE ← f alse
r et ur n GoE

end if
end whi le

end for
r et ur n GoE

Let Cinner denote the number of operat ions performed on a single
iterat ion of the innermost loop in r ever se(A ,φ) . Without loss of
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generality, we will assume Cinner is a constant4.
Now, let Cx(n) denote the number of operat ions required to com-

plete ignoring part ial pre-images already in Q before reaching the x-th
cell in the current pre-image. We can express Cx(n) as the following
recurrence relat ion,

Cx(n) =
nX

i= x

Cinner + e(x)
nX

i= x+ 1

a(i )Ci (n)

where e(x) = 0 if T0 = T1 6= φt− i
x otherwise e(x) = 1, and a(x) = 1 if

T0 = T1 = φt− 1
x otherwise a(x) = 0.

The worst case for Cx(n) occurs when the number of part ial pre-
images being pushed onto the queue is every iterat ion. In this case, we
have∀i > x�(a(i ) = 1∧e(i ) = 1) and the recurrence relat ion becomes,

Cx(n) =
nX

i= x

Cinner +
nX

i= x+ 1

Ci (n)�

We can now solve this recurrence relat ion. First consider expanding
the Cx+ 1(n) term in the summat ion,

Cx(n) =
nX

i= x

Cinner +
nX

i= x+ 1

Ci (n)

=
nX

i= x

Cinner + Cx+ 1(n) +
nX

i= x+ 2

Ci (n)

= Cinner +
nX

i= x+ 1

Cinner +

 
nX

i= x+ 1

Cinner +
nX

i= x+ 2

Ci (n)

!

+
nX

i= x+ 2

Ci (n)

=
nX

i= x

Cinner +

 
nX

i= x+ 1

Cinner +
nX

i= x+ 2

Ci (n)

!

+
nX

i= x+ 2

Ci (n)

= Cinner + 2
nX

i= x+ 1

Cinner + 2
nX

i= x+ 2

Ci (n)�

4Clearly this is not t rue in reality, but inst ead 3 ≤ Cinner ≤ 6

Complex Systems, v ol u m e (year) 1–1+



20 D. J. Warne, R. F. Hayward, N. A . K elson, D. G. M allet

Now, expending the Cx+ 2(n) term,

Cx(n) = Cinner + 2
nX

i= x+ 1

Cinner + 2
nX

i= x+ 2

Ci (n)

= Cinner + 2
nX

i= x+ 1

Cinner + 2Cx+ 2(n) + 2
nX

i= x+ 3

Ci (n)

= Cinner + 2Cinner + 2
nX

i= x+ 2

Cinner

+ 2

 
nX

i= x+ 2

Cinner +
mX

x+ 3

Ci (n)

!

+ 2
nX

i= x+ 3

Ci (n)

= Cinner + 2Cinner + 4
nX

i= x+ 2

Cinner + 4
nX

i= x+ 3

Ci (n)�

Repeat ing this process yields,

Cx(n) = Cinner + 2Cinner + 4Cinner + ���+ 2n− xCinner

= Cinner

nX

i= x

2i− x�

The worst case for r ever se(A ,φ) requires that C2(n) operat ions be
executed four t imes,

Cwor st = 4C2(n)

= 4Cinner

nX

i= 2

2i− 2

= Cinner

nX

i= 2

2i

hence r ever se(A ,φ) is in O(2n). It is worth not ing that this worst
case can only be achieved if the φ is a Garden-of-Eden configurat ion,
and the cell which determines this is the n-th cell. For example, φ =
(0�0�����0�1�1) for the elementary cellular automaton rule 2. However,
according to Wuensche and Lesser [20] the average case is orders of
magnitude bet ter. We confirm this experimentally in Sect ion 5.2.

5.2 Experimental comparison

Webenchmarked eden-det (A ,φ) against r ever se(A ,φ). Each exper-
iment consisted of solving the Eden problem for 1000 random config-
urat ions. Experiments were performed for both eden-det (A ,φ) and
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Figure 7. Comparison of eden-det (A ,φ) against r ever se(A ,φ) using a ran-
dom sampling of configurat ions.

r ever se(A ,φ) using all the elementary cellular automata with cell
counts ranging from 4 to 32. As shown in Figure 7, the benchmark av-
erage case is effect ively the same order of magnitude for both methods.

The worst case for r ever se(A ,φ) is only approached for Garden-of-
Eden configurat ions which is nearly ident ical to a non Garden-of-Eden
configurat ion only differing in the last few cells. This is more likely to
be possible with sparse configurat ions (i.e., very few 1 states compared
with 0 states). If we rest rict the random sample of test configurat ions
to that of sparse configurat ions, then the probability of select ing a
configurat ion which degrades the performance of r ever se(A ,φ).

Figure8 indicates that thebenchmark resultsarevery different when
we rest rict the configurat ion sample this way. Such cases place a lim-
itat ion on the usability of r ever se(A ,φ) for large cell counts5. The
performance of eden-det (A ,φ), however, is hardly affected by such
sparse configurat ions.

The main difference in our approach which provides such a large
improvement in the worst case performance is the neighborhood elim-
inat ion step. This operat ion performance is not affected by shifts (or
rotat ions in higher dimension) in the same configurat ion, because it
t reats each cell neighborhood independent ly of each other. As a re-
sult , eden-det (A ,φ) provides a solut ion to the Eden problem which
is scalable to very large cellular automata. eden-det (A ,φ) could be
considered as a more stable alternat ive to Wuesnche and Lesser’s r e-
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Figure 8. Comparison of eden-det (A ,φ) against r ever se(A ,φ) using a ran-
dom sampling of sparse configurat ions.

ver se(A ,φ) as the worst case is vast ly improved without degrading
the average case.

6. Algorit hm correctness

In this sect ion, we discuss the correctness of the eden-det (A ,φ) in
solving the Eden problem for graph cellular automata. We are able
to show that eden-det (A ,φ) is completely correct for graphs with
a single cycle. For graphs with more than one cycle it is possible for
incorrect results to be returned6(i.e., false negat ives), however we show
that these cases are rare.

It isfirst worth discussing thecorrectnessof thesolut ion when eden-
det (A ,φ) returns with GoE = tr ue. This result will never occur if φ
has a pre-image (i.e., false posit ives cannot occur). This is because
elements in H are only ever set to 0 when there is no i�j -consistent
pair in a neighbor cell. If GoE = tr ue is returned then at some point
there must have existed an i such that ∀j �Hj �i = 0 (i.e., a cell has no
possible i�j -consistent neighborhood configurat ions). For φ to have a
pre-image each cell must have at least one i�j -consistent neighborhood

5As t he cell count increases any configurat ion wit h a relat ively small sparse
sub-sequence could render the Eden problem comput at ionally int ractable for r e-
ver se(A ,φ)

6 I f t his were not so the t it le of this paper would be “ P = N P” !
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configurat ion. Therefore only a t rue Garden-of-Eden configurat ion can
cause GoE = tr ue to be returned.

When eden-det (A ,φ) returns with GoE = f alse there are possible
false ident ificat ions. That is, it is possible for a Garden-of-Eden con-
figurat ion to cause GoE = f alse to be returned. However, this rare
case is only a possibility when the graph G has more than one cycle.

We will now show that eden-det (A ,φ) returning GoE = f alse is
always correct if G contains only one cycle. Consider H which has
reached a non-zero steady state after execut ing ph1(A ,H ). If we as-
sume a neighborhood configurat ion Hj �i = 1 (see Sect ion 3.3), and
carry out an iterat ion of nh-el im(A ,H ) we are essent ially propagat ing
the assumpt ion around the cycle of G. When this propagat ion returns
to i then there are only two possibilit ies: 1) The assumed Hj �i is not
eliminated meaning a chain of i�j -consistent pairs can be constructed
(i.e., a pre-imagecan exist under this assumpt ion), and 2) Theassumed
Hj �i is eliminated, henceψj cannot contribute to any pre-image. Since
eden-det (A ,φ) only returns GoE = f alse when every element in H
has passed assumpt ion test ing, we can conclude this can only occur if
φ does in fact have a possible pre-image. Therefore eden-det (A ,φ) is
completely correct for G with a single cycle.

These correctness results for the single cycle (i.e., 1-d) case havealso
been supported by experimental results. We executed eden-det (A �φ)
on the ent ire configurat ion space for all elementary cellular automata
where n = [4�8�16]. Each return value was validated via a brute force
search for a pre-image. This resulted in a 100% success rate.

Unfortunately, things are not so easy for G with mult iple cycles.
The assumpt ion test ing method we apply in ph2(A �H ) is really only
powerful enough to test consistency within a single cycle. It may be
possible for every H j �i to pass the assumpt ion test but any choice made
from one cycle breaks consistency in another. Hence a complete solu-
t ion would require looking at pairs of cycles, t riples of cycles etc.7. This
is likely the result of the N P-complete nature of the Eden problem in
more than one dimension.

Again, we look to empirical data to show that in the majority of
cases the single cycle accuracy is all we need. This t ime over 170�000
random instancesof eden(A �φ) (for a fixed choiceof rules represent ing
Wolfram Classes i,i i , and i i i [15]) were taken as inputs8. Every result
was compared to a brute force approach.

We found that for Class i cellular automata (i.e., point at t ractors)
no false negat ives ever seem to occur. Rules that fall under Class i i

7Of course we do not have a rigorous proof of t his. I f we did, the t it le of this
paper would be “ P 6= N P” !

8T he t opology of t he graph G was equivalent t o a dodecahedron. Since |V | = 20,
t he complete configurat ion space is 220.
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(i.e., simple st ructures, maybe periodic) had a low number of false
negat ives; around 0�01%. Class i i i cellular automata (i.e., chaot ic) are
a different story, with around 16% of cases in which eden-det (A ,φ)
returned GoE = f alse were incorrect9. Over all samples, the false
negat ive rate was around 10%.

False negat ives can be detected without resort ing to a brute force
sweep. As previously stated in Sect ion 3.3, the final state of H com-
pletely encodes all possible pre-images. Neighborhoods in H can be
st itched together using a method similar to Wuensche’s general re-
verse algorithm [19], if no pre-image can be constructed then we have
detected a false negat ive. In light of this, our algorithm could also
be considered as a search reduct ion step to be used prior to invoking
Wuensche’s general method. Combined, this would provide a com-
pletely correct and moreeffi cient method for construct ing configurat ion
t ransit ion graphs.

7. Conclusion

In this paper we have presented an effi cient algorithm (i.e., average
case in Θ(n2)), eden-det (A ,H ), for solving the Eden problem for
graph cellular automata. By changing the topology of the graph G,
the Eden problem can be solved for all classes of determinist ic dis-
crete dynamical systems (e.g., regular cellular automata, and random
boolean networks). This analysis provides a firm foundat ion for further
study of the global dynamics of discrete dynamical systems.

Appendix

A. Proof of Theorem 1

Proof. First consider the equality,

θ
iΞ j

i (ψn) = θ
iΞ j

j (ψm)�

Given Definit ion 9, we can expand the above expression. This yields,

≡∀s�(ψ′
n�s = ψ′

m�s ∧∃p�(ψn�p = ψ′
n�s ∧y = hi�p ∧y = iΞj

s)

∧∃q�(ψm�q = ψ′
m�s∧z = hj �q∧z = iΞj

s))�

9I t is int erest ing t o note that it is only Class i i i cellular aut omata that seem t o
cause ph2(A �H ) to be execut ed in the 1-d case.
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This can be reduced using predicate calculus,

≡∀s�(ψ′
n�s = ψ′

m�s ∧∃p�(ψn�p = ψ′
n�s ∧hi�p = iΞj

s)

∧∃q�(ψm�q = ψ′
m�s∧hj �q = iΞj

s))

≡∀s�(ψ′
n�s = ψ′

m�s∧
∃p�q(ψn�p = ψ′

n�s ∧hi�p = iΞj
s ∧ψm�q = ψ′

m�s∧hj �q = iΞj
s))

≡∀s�(∃p�q(ψ′
n�s = ψ′

m�s ∧ψn�p = ψ′
n�s ∧hi�p = iΞj

s

∧ψm�q = ψ′
m�s∧hj �q = iΞj

s))

≡∀s�(∃p�q(ψn�p = ψm�q ∧hi�p = iΞj
s ∧hj �q = iΞj

s))

Now let C0(hi ) = ψn and C0(hj ) = ψm, hence C0(hi�p) = ψn�p and
C0(hj �q) = ψm�q

|=∀s�(∃p�q(ψn�p = ψm�q ∧hi�p = iΞj
s ∧hj �q = iΞj

s) ∧C0(hi�p) = ψn�p

∧C0(hj �q) = ψm�q)

≡∀s�(∃p�q(hi�p = iΞj
s ∧hj �q = iΞj

s) ∧C0(hi�p) = C0(hj �q))

Thissat isfiesour definit ion of i�j -consistency (i.e., Definit ion 8). There-
fore ψn and ψm are i�j -consistent .
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1Available on GitHub at ht tps:/ / github.com/ davidwarne/ GCALab.git .
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+++ Welcome to Graph Cellular Automata Lab! +++

The Graph Cellular Automata Lab is a multi-threaded,

flexible, analysis tool for the exploration of cellular automata

defined on graphs.

Version: 0.19

Author: David J. Warne

School: School of Electrical Engineering and Computer Science,
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GCALab v 0.19 Copyright (C) 2013 David J. Warne

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions.

Type 'help' to get started.
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-->new-work 10

New Workspace created! ID = 0

gca 1

-->gca 0 -s 2 -eca 32 3 110

-->entropy 0 -n 100 -t 10 -e Shannon

-->print-res 0

type: 0

id: (0):S

data length: 1

0.867771

1Note that gca is actually a back-end compute operat ion, but we did not use the q-cmd

command. This is because the q-cmd is opt ional as the GCALab interpreter can tell the

di�erence, but a user may use it for clarity.
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function [pval] = ksampleEtest(A,alpha)

% [PVAL] = KSAMPLEETEST(A,ALPHA) k-sample E-test

% for equality of equalitily of k empirical

% distributions.

k = length(A);

n = zeros(k,1);

d = zeros(k,1);

for i=1:k

[n(i),d(i)] = size(A{i});

end

if sum(d ~= d(1)) > 0

error('Distirbutions must have the same dimensionality.');

end

d = d(1);

% size of pooled data

N = sum(n);

% pooled data

X = zeros(N,d);

% offsets

m = ones(k,1);

for i=2:k

m(i) = m(i-1)+n(i-1);

end



% copy sample data

for i=1:k

X(m(i):(m(i)+n(i)-1),:) = A{i}(1:n(i),:);

end

% compute the observed test-statistic

E0 = estatk(A);

% determine number of resamples required

B = round(10^(abs(log10(alpha))))*10-1

E = zeros(B,1);

% derive bootstrap estmate of P(En <= t)

for b=1:B

% generate a random permutation of the pooled sample

perm = randperm(N);

X(1:N,:) = X(perm,:);

% generate new sample

for i=1:k

A{i}(1:n(i),:) = X(m(i):(m(i)+n(i)-1),:);

end

E(b) = estatk(A);

end

% P(En <= t) ~ 1/B sum(I(E0 <= t))

pval = (sum(E > E0)+1)/(B+1);
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function [etest] = estatk(A)

% [ESTAT] = ESTATK(A) computes the k-sample

% test statistic for the multivariate E-test

% for equal distributions

k = length(A);

etest = 0;

for j=2:k

for i=1:j-1

etest = etest + estat2(A{i},A{j});

end

end

function [etest] = estat2(X,Y)

% [ETEST] = ESTAT2(X,Y) computes the two-sample

% test statistic for the multivariate E-test for

% equal distibutions.

[n1,d1] = size(X);

[n2,d2] = size(Y);

if d1 ~= d2

error('Distributions must have the same dimensionality.');

end



t1 = 0;

for i=1:n1

X_i = repmat(X(i,:),[n2,1]);

t1 = t1 + sum(sum((X_i - Y(1:n2,:)).^2,2).^(1/2));

end

t2 = 0;

for i=1:n1

X_i = repmat(X(i,:),[n1,1]);

t2 = t2 + sum(sum((X_i - X(1:n1,:)).^2,2).^(1/2));

end

t3 = 0;

for i=1:n2

Y_i = repmat(Y(i,:),[n2,1]);

t3 = t3 + sum(sum((Y_i - Y(1:n2,:)).^2,2).^(1/2));

end

etest = ((n1*n2)/(n1+n2))* ...

((2.0/(n1*n2))*t1 - (1.0/n1*n1)*t2 - (1.0/n2*n2)*t3);
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