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Abstract

This paper presents a pre-processing and a distance which improve the perfor-
mance of machine learning algorithms working on independent and identically
distributed stochastic processes. We introduce a novel non-parametric approach to
represent random variables which splits apart dependency and distribution with-
out losing any information. We also propound an associated metric leveraging
this representation and its statistical estimate. Besides experiments on synthetic
datasets, the benefits of our contribution is illustrated through the example of
clustering financial time series, for instance prices from the credit default swaps
market. Results are available on the website www.datagrapple.com and an
IPython Notebook tutorial is available at www.datagrapple.com/Tech for
reproducible research.

1 Introduction

Machine learning on time series is a booming field and as such plenty of representations, transfor-
mations, normalizations, metrics and other divergences are thrown at disposal to the practitioner.
A further consequence of the recent advances in time series mining is that it is difficult to have
a sober look at the state of the art since many papers state contradictory claims as described in
(Ding et al., 2008). To be fair, we should mention that when data, pre-processing steps, distances
and algorithms are combined together, they have an intricate behaviour making it difficult to draw
unanimous conclusions especially in a fast-paced environment. Restricting the scope of time se-
ries to independent and identically distributed (i.i.d.) stochastic processes, we propound a method
which, on the contrary to many of its counterparts, is mathematically grounded with respect to the
clustering task defined in subsection 1.1. The representation we present in Section 2 exploits a
property similar to the seminal result of copula theory, namely Sklar’s theorem (Sklar, 1959). This
approach leverages the specificities of random variables and this way solves several shortcomings
of more classical data pre-processing and distances that will be detailed in subsection 1.2. Section
3 is dedicated to experiments on synthetic and real datasets to illustrate the benefits of our method
which relies on the hypothesis of i.i.d. sampling of the random variables. Synthetic time series are
generated by a simple model yielding correlated random variables following different distributions.
The presented approach is also applied to financial time series from the credit default swaps mar-
ket whose prices dynamics are usually modelled by random walks according to the efficient-market
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hypothesis (Fama, 1965). This dataset seems more interesting than stocks as credit default swaps
are often considered as a gauge of investors’ fear, thus time series are subject to more violent moves
and may provide more distributional information than the ones from the stock market. We have
made our detailed experiments (cf. Machine Tree on the website www.datagrapple.com) and
Python code available (www.datagrapple.com/Tech) for reproducible research. Finally, we
conclude the paper with a discussion on the method and we propound future research directions.

1.1 Motivation and goal of study

Machine learning methodology usually consists in several pre-processing steps aiming at cleaning
data and preparing them for being fed to a battery of algorithms. Data scientists have the daunt-
ing mission to choose the best possible combination of pre-processing, dissimilarity measure and
algorithm to solve the task at hand among a profuse literature. In this article, we provide both a
pre-processing and a distance for studying i.i.d. random processes which are compatible with basic
machine learning algorithms.

Many statistical distances exist to measure the dissimilarity of two random variables, and therefore
two i.i.d. random processes. Such distances can be roughly classified in two families:

1. distributional distances, for instance (Ryabko, 2010), (Khaleghi et al., 2012) and (Hen-
derson et al., 2015), which focus on dissimilarity between probability distributions and
quantify divergences in marginal behaviours,

2. dependence distances, such as the distance correlation or copula-based kernel dependency
measures (Póczos et al., 2012), which focus on the joint behaviours of random variables,
generally ignoring their distribution properties.

However, we may want to be able to discriminate random variables both on distribution and de-
pendence. This can be motivated, for instance, from the study of financial assets returns: are two
perfectly correlated random variables (assets returns), but one being normally distributed and the
other one following a heavy-tailed distribution, similar? From risk perspective, the answer is no
(Kelly and Jiang, 2014), hence the propounded distance of this article. We illustrate its benefits
through clustering, a machine learning task which primarily relies on the metric space considered
(data representation and associated distance). Besides clustering has found application in finance,
e.g. (Tola et al., 2008), which gives us a framework for benchmarking on real data.

Our objective is therefore to obtain a good clustering of random variables based on an appropriate
and simple enough distance for being used with basic clustering algorithms, e.g. Ward hierarchical
clustering (Ward, 1963), k-means++ (Arthur and Vassilvitskii, 2007), affinity propagation (Frey and
Dueck, 2007).

By clustering we mean the task of grouping sets of objects in such a way that objects in the same
cluster are more similar to each other than those in different clusters. More specifically, a cluster of
random variables should gather random variables with common dependence between them and with
a common distribution. Two clusters should differ either in the dependency between their random
variables or in their distributions.

A good clustering is a partition of the data that must be stable to small perturbations of the dataset.
“Stability of some kind is clearly a desirable property of clustering methods” (Carlsson and Mémoli,
2010). In the case of random variables, these small perturbations can be obtained from resampling
(Levine and Domany, 2001), (Monti et al., 2003), (Lange et al., 2004) in the spirit of the bootstrap
method since it preserves the statistical properties of the initial sample (Efron, 1979).

Yet, practitioners and researchers pinpoint that state-of-the-art results of clustering methodology
applied to financial times series are very sensitive to perturbations (Lemieux et al., 2014). The
observed unstability may result from a poor representation of these time series, and thus clusters
may not capture all the underlying information.

1.2 Shortcomings of a standard machine learning approach

A naive but often used distance between random variables to measure similarity and to perform
clustering is the L2 distance E[(X − Y )2]. Yet, this distance is not suited to our task.
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Figure 1: Probability density functions of Gaussians N (−5, 1) and N (5, 1) (in green), Gaussians
N (−5, 3) and N (5, 3) (in red), and Gaussians N (−5, 10) and N (5, 10) (in blue). Green, red and
blue Gaussians are equidistant using L2 geometry on the parameter space (µ, σ).

Example 1 (Distance L2 between two Gaussians). Let (X,Y ) be a bivariate Gaussian vector, with
X ∼ N (µX , σ

2
X), Y ∼ N (µY , σ

2
Y ) and whose correlation is ρ(X,Y ) ∈ [−1, 1]. We obtain

E[(X − Y )2] = (µX − µY )2 + (σX − σY )2 + 2σXσY (1− ρ(X,Y )). Now, consider the following
values for correlation:

• ρ(X,Y ) = 0, so E[(X − Y )2] = (µX − µY )2 + σ2
X + σ2

Y . The two variables are inde-
pendent (since uncorrelated and jointly normally distributed), thus we must discriminate
on distribution information. Assume µX = µY and σX = σY . For σX = σY � 1, we
obtain E[(X − Y )2] � 1 instead of the distance 0, expected from comparing two equal
Gaussians.

• ρ(X,Y ) = 1, so E[(X − Y )2] = (µX − µY )2 + (σX − σY )2. Since the variables are
perfectly correlated, we must discriminate on distributions. We actually compare them
with a L2 metric on the mean × standard deviation half-plane. However, this is not an
appropriate geometry for comparing two Gaussians (Costa et al., 2014). For instance, if
σX = σY = σ, we find E[(X − Y )2] = (µX − µY )2 for any values of σ. As σ grows,
probability attached by the two Gaussians to a given interval grows similar (cf. Fig. 1), yet
this increasing similarity is not taken into account by this L2 distance.

E[(X−Y )2] considers both dependence and distribution information of the random variables, but not
in a relevant way with respect to our task. Yet, we will benchmark against this distance since other
more sophisticated distances on time series such as dynamic time warping (Berndt and Clifford,
1994) and representations such as wavelets (Percival and Walden, 2006) or SAX (Lin et al., 2003)
were explicitly designed to handle temporal patterns which are inexistant in i.i.d. random processes.

2 A generic representation for random variables

Our purpose is to introduce a new data representation and a suitable distance which takes into ac-
count both distributional proximities and joint behaviours.
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Figure 2: ArcelorMittal and Société générale prices (T observations (Xt
1, X

t
2)Tt=1 from (X1, X2) ∈

V2) are projected on dependence ⊕ distribution space; (GX1
(X1), GX2

(X2)) ∈ U2 encode the
dependence between X1 and X2 (a perfect correlation would be represented by a sharp diagonal on
the scatterplot); (GX1 , GX2) are the margins (their log-densities are displayed above), notice their
heavy-tailed exponential distribution (especially for ArcelorMittal).

2.1 A representation preserving total information

Let (Ω,F ,P) be a probability space. Ω is the sample space, F is the σ-algebra of events, and P is
the probability measure. Let V be the space of all continuous real-valued random variables defined
on (Ω,F ,P). Let U be the space of random variables following a uniform distribution on [0, 1] and
G be the space of absolutely continuous cumulative distribution functions (cdf).
Definition 1 (The copula transform). Let X = (X1, . . . , XN ) ∈ VN be a random vector with cdfs
GX = (GX1

, . . . , GXN ) ∈ GN . The random vector GX(X) = (GX1
(X1), . . . , GXN (XN )) ∈ UN

is known as the copula transform.
Property 1 (Uniform margins of the copula transform). GXi(Xi), 1 ≤ i ≤ N , are uniformly
distributed on [0, 1].

Proof. x = GXi(G
−1
Xi

(x)) = P(Xi ≤ G−1Xi (x)) = P(GXi(Xi) ≤ x).

We define the following representation of random vectors that actually splits the joint behaviours of
the marginal variables from their distributional information.
Definition 2 (dependence ⊕ distribution space projection). Let T be a mapping which transforms
X = (X1, . . . , XN ) into its generic representation, an element of UN×GN representingX , defined
as follow

T : VN → UN × GN (1)
X 7→ (GX(X), GX).

Property 2. T is a bijection.

Proof. T is surjective as any element (U,G) ∈ UN × GN has the fiber G−1(U). T is injective as
(U1, G1) = (U2, G2) a.s. in UN ×GN implies that they have the same cdf G = G1 = G2 and since
U1 = U2 a.s., it follows that G−1(U1) = G−1(U2) a.s.

This result replicates the seminal result of copula theory, namely Sklar’s theorem (Sklar, 1959),
which asserts one can split the dependency and distribution apart without losing any information.
Fig. 2 illustrates this projection for N = 2.

2.2 A distance between random variables

We leverage the propounded representation to build a suitable yet simple distance between random
variables which is invariant under diffeomorphism.
Definition 3 (Distance dθ between two random variables). Let θ ∈ [0, 1]. Let (X,Y ) ∈ V2. LetG =
(GX , GY ), where GX and GY are respectively X and Y marginal cdfs. We define the following
distance

d2θ(X,Y ) = θd21(GX(X), GY (Y )) + (1− θ)d20(GX , GY ), (2)
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where

d21(GX(X), GY (Y )) = 3E[|GX(X)−GY (Y )|2], (3)

and

d20(GX , GY ) =
1

2

∫
R

(√
dGX
dλ
−
√
dGY
dλ

)2

dλ. (4)

In particular, d0 =
√

1−BC is the Hellinger distance related to the Bhattacharyya (1/2-Chernoff)
coefficientBC upper bounding the Bayes’ classification error. To quantify distribution dissimilarity,
d0 is used rather than the more general α-Chernoff divergences since it satisfies the properties 3, 4,
5 (significant for practitioners). In addition, dθ can thus be efficiently implemented as a scalar
product. d1 =

√
(1− ρS)/2 is a distance correlation measuring statistical dependence between two

random variables, where ρS is the Spearman’s correlation between X and Y . Notice that d1 can be
expressed by using the copula C : [0, 1]2 → [0, 1] implicitly defined by the relation G(X,Y ) =

C(GX(X), GY (Y )) since ρS(X,Y ) = 12
∫ 1

0

∫ 1

0
C(u, v) du dv − 3 (Fredricks and Nelsen, 2007).

Example 2 (Distance dθ between two Gaussians). Let (X,Y ) be a bivariate Gaussian vector, with
X ∼ N (µX , σ

2
X), Y ∼ N (µY , σ

2
Y ) and ρ(X,Y ) = ρ. We obtain,

d2θ(X,Y ) = θ
1− ρS

2
+ (1− θ)

(
1−

√
2σXσY
σ2
X + σ2

Y

e
− 1

4

(µX−µY )2

σ2
X

+σ2
Y

)
.

Remember that for perfectly correlated Gaussians (ρ = ρS = 1), we want to discriminate on their
distributions. We can observe that

• for σX , σY → +∞, then d0(X,Y ) → 0, it alleviates a main shortcoming of the basic L2

distance which is diverging to +∞ in this case;

• if µX 6= µY , for σX , σY → 0, then d0(X,Y ) → 1, its maximum value, i.e. it means
that two Gaussians cannot be more remote from each other than two different Dirac delta
functions.

We will refer to the use of this distance as the generic parametric representation (GPR) approach.
GPR distance is a fast and good proxy for distance dθ when the first two moments µ and σ predom-
inate. Nonetheless, for datasets which contain heavy-tailed distributions, GPR fails to capture this
information.

Property 3. Let θ ∈ [0, 1]. The distance dθ verifies 0 ≤ dθ ≤ 1.

Proof. Let θ ∈ [0, 1]. We have

(i) 0 ≤ d0 ≤ 1, property of the Hellinger distance;

(ii) 0 ≤ d1 ≤ 1, since −1 ≤ ρS ≤ 1.

Finally, by convex combination, 0 ≤ dθ ≤ 1.

Property 4. For 0 < θ < 1, dθ is a metric.

Proof. Let (X,Y ) ∈ V2. For 0 < θ < 1, dθ is a metric, and the only non-trivial property to verify
is the separation axiom

(i) X = Y a.s. ⇒ dθ(X,Y ) = 0
X = Y a.s. ⇒ d1(GX(X), GY (Y )) = d0(GX , GY ) = 0, and thus dθ(X,Y ) = 0,

(ii) dθ(X,Y ) = 0⇒ X = Y a.s.
dθ(X,Y ) = 0⇒ d1(GX(X), GY (Y )) = 0 and d0(GX , GY ) = 0⇒ GX(X) = GY (Y ) a.s.
and GX = GY . Since G is absolutely continuous, it follows X = Y a.s.
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Notice that for θ ∈ {0, 1}, this property does not hold. Let U ∈ V , U ∼ U [0, 1]. U 6= 1 − U but
d0(U, 1− U) = 0. Let V ∈ V . V 6= 2V but d1(V, 2V ) = 0.

Property 5. Diffeomorphism invariance. Let h : V → V be a diffeomorphism. Let (X,Y ) ∈ V2.
Distance dθ is invariant under diffeomorphism, i.e.

dθ(h(X), h(Y )) = dθ(X,Y ). (5)

Proof. From definition, we have

d20(h(X), h(Y )) = 1−
∫
R

√
dGh(X)

dλ

dGh(Y )

dλ
dλ (6)

and since
dGh(X)

dλ
(λ) =

1

h′ (h−1(λ))

dGX
dλ

(
h−1(λ)

)
, (7)

we obtain

d20(h(X), h(Y )) = 1−
∫
R

1

h′ (h−1(λ))

√
dGX
dλ

dGY
dλ

(
h−1(λ)

)
dλ

= d20(X,Y ).

(8)

In addition, ∀x ∈ R, we have

Gh(X) (h(x)) = P [h(X) ≤ h(x)]

=

{
P [X ≤ x] = GX(x), if h increasing

1− P [X ≤ x] = 1−GX(x), otherwise

(9)

which implies that

d21 (h(X), h(Y )) = 3E
[
|Gh(X)(h(X))−Gh(Y )(h(Y ))|2

]
= 3E

[
|GX(X)−GY (Y )|2

]
= d21(X,Y ).

(10)

Finally, we obtain Property 5 by definition of dθ.

Thus, dθ is invariant under monotonic transformations, a desirable property as it ensures to be insen-
sitive to scaling (e.g. choice of units) or measurement scheme (e.g. device, mathematical modelling)
of the underlying phenomenon.

2.3 A non-parametric statistical estimation of dθ

To apply the propounded distance dθ on sampled data without parametric assumptions, we have to
define its statistical estimate d̃θ working on realizations of the i.i.d. random variables. Distance d1
working with continuous uniform distributions can be approximated by normalized rank statistics
yielding to discrete uniform distributions, in fact coordinates of the multivariate empirical copula
(Deheuvels, 1979) which is a non-parametric estimate converging uniformly toward the underlying
copula (Deheuvels, 1981). Distance d0 working with densities can be approximated by using its
discrete form working on histogram density estimates.

Definition 4 (The empirical copula transform). Let XT = (Xt
1, . . . , X

t
N ), t = 1, . . . , T , be

T observations from a random vector X = (X1, . . . , XN ) with continuous margins GX =
(GX1

(X1), . . . , GXN (XN )). Since one cannot directly obtain the corresponding copula ob-
servations (GX1

(Xt
1), . . . , GXN (Xt

N )) without knowing a priori GX , one can instead estimate
the N empirical margins GTXi(x) = 1

T

∑T
t=1 1(Xt

i ≤ x) to obtain T empirical observations
(GTX1

(Xt
1), . . . , GTXN (Xt

N )) which are thus related to normalized rank statistics as GTXi(X
t
i ) =

X
(t)
i /T , where X(t)

i denotes the rank of observation Xt
i .

6



Definition 5 (Empirical distance). Let (Xt)Tt=1 and (Y t)Tt=1 be T realizations of real-valued ran-
dom variables X,Y ∈ V respectively. An empirical distance between realizations of random vari-
ables can be defined by

d̃2θ
(
(Xt)Tt=1, (Y

t)Tt=1

) a.s.
= θd̃21 + (1− θ)d̃20, (11)

where

d̃21 =
3

T (T 2 − 1)

T∑
t=1

(
X(t) − Y (t)

)2
(12)

and

d̃20 =
1

2

+∞∑
k=−∞

(√
ghX(hk)−

√
ghY (hk)

)2

, (13)

h being here a suitable bandwidth, and ghX(x) = 1
T

∑T
t=1 1(bxhch ≤ Xt < (bxhc + 1)h) being a

density histogram estimating pdf gX from (Xt)Tt=1, T realizations of random variable X ∈ V .

We will refer henceforth to this distance and its use as the generic non-parametric representation
(GNPR) approach. To use effectively dθ and its statistical estimate, it boils down to select a particular
value for θ. We suggest here an exploratory approach where one can test (i) distribution information
(θ = 0), (ii) dependence information (θ = 1), and (iii) a mix of both information (θ = 0.5).
Ideally, θ should reflect the balance of dependence and distribution information in the data. In
a supervised setting, one could select an estimate θ̂ of the right balance θ? optimizing some loss
function by techniques such as cross-validation. Yet, the lack of a clear loss function makes the
estimation of θ? difficult in an unsupervised setting. For clustering, many authors (Lange et al.,
2004), (Shamir et al., 2007), (Shamir et al., 2008), (Meinshausen and Bühlmann, 2010) suggest
stability as a tool for parameter selection. But, (Ben-David et al., 2006) warn against its irrelevant
use for this purpose. Besides, we already use stability for clustering validation and we want to avoid
overfitting. Finally, we think that finding an optimal trade-off θ? is important for accelerating the
rate of convergence toward the underlying ground truth when working with finite and possibly small
samples, but ultimately lose its importance asymptotically as soon as 0 < θ < 1.

3 Experiments and applications

3.1 Synthetic datasets

We propose the following model for testing the efficiency of the GNPR approach: N time series of
length T which are subdivided intoK correlation clusters themselves subdivided intoD distribution
clusters.

Let (Yk)Kk=1, beK i.i.d. random variables. Let p,D ∈ N. LetN = pKD. Let (Zid)
D
d=1, 1 ≤ i ≤ N ,

be independent random variables. For 1 ≤ i ≤ N , we define

Xi =

K∑
k=1

βk,iYk +

D∑
d=1

αd,iZ
i
d, (14)

where

a) αd,i = 1, if i ≡ d− 1 (mod D), 0 otherwise;
b) β ∈ [0, 1],
c) βk,i = β, if diK/Ne = k, 0 otherwise.

(Xi)
N
i=1 are partitioned into Q = KD clusters of p random variables each. Playing with the model

parameters, we define in Table 1 some interesting test case datasets to study distribution clustering,
dependence clustering or a mix of both. We use the following notations as a shorthand: L :=
Laplace(0, 1/

√
2) and S := t-distribution(3)/

√
3. Since L and S have both a mean of 0 and a

variance of 1, GPR cannot find any difference between them, but GNPR can discriminate on higher
moments as it can be seen in Fig. 3.
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GPR θ = 0 GPR θ = 1 GPR θ = 0.5

GNPR θ = 0 GNPR θ = 1 GNPR θ = 0.5

Figure 3: GPR and GNPR distance matrices. Both GPR and GNPR highlight the 5 correlation
clusters (θ = 1), but only GNPR finds the 2 distributions (S and L) subdividing them (θ = 0).
Finally, by combining both information GNPR (θ = 0.5) can highlight the 10 original clusters,
while GPR (θ = 0.5) simply adds noise on the correlation distance matrix it recovers.

Table 1: Model parameters for some interesting test case datasets
Clustering Dataset N T Q K β Yk Zi1 Zi2 Zi3 Zi4

Distribution A 200 5000 4 1 0 N (0, 1) N (0, 1) L S N (0, 2)
Dependence B 200 5000 10 10 0.1 S S S S S

Mix C 200 5000 10 5 0.1 N (0, 1) N (0, 1) S N (0, 1) S
G 32, . . . , 640 10, . . . , 2000 32 8 0.1 N (0, 1) N (0, 1) N (0, 2) L S

3.2 Performance of clustering using GNPR

We empirically show that the GNPR approach achieves better results than others using common
distances regardless of the algorithm used on the defined test cases A, B and C described in Table
1. Test case A illustrates datasets containing only distribution information: there are 4 clusters of
distributions. Test case B illustrates datasets containing only dependence information: there are
10 clusters of correlation between random variables which are heavy-tailed. Test case C illustrates
datasets containing both information: it consists in 10 clusters composed of 5 correlation clusters and
each of them is divided into 2 distribution clusters. Using scikit-learn implementation (Pedregosa
et al., 2011), we apply 3 clustering algorithms with different paradigms: a hierarchical clustering
using average linkage (HC-AL), k-means++ (KM++), and affinity propagation (AP). Experiment
results are reported in Table 2. GNPR performance is due to its proper representation (cf. Fig. 4).
Finally, we have noticed increasing precision of clustering using GNPR as time T grows to infinity,
all other parameters being fixed. The number of time series N seems rather uninformative as illus-
trated in Fig. 5 (left) which plots ARI (Hubert and Arabie, 1985) between computed clustering and
ground-truth of dataset G as an heatmap for varying N and T . Fig. 5 (right) shows the convergence
to the true clustering as a function of T .

3.3 Application to financial time series clustering

3.3.1 Clustering assets: a (too) strong focus on correlation

It has been noticed that straightfoward approaches automatically discover sector and industries
(Mantegna, 1999). Since detected patterns are blatantly correlation-flavoured, it prompted econo-
physicists to focus on correlations, hierarchies and networks (Tumminello et al., 2010) from the
Minimum Spanning Tree and its associated clustering algorithm the Single Linkage to the state of
the art (Musmeci et al., 2014) exploiting the topological properties of the Planar Maximally Filtered

8



(1− ρ)/2 L2 GPR θ = 0.5 GNPR θ = 0.5

Figure 4: Distance matrices obtained on dataset C using distance correlation, L2 distance, GPR and
GNPR. None but GNPR highlights the 10 original clusters which appear on its diagonal.

Table 2: Comparison of distance correlation, L2 distance, GPR and GNPR: GNPR approach im-
proves clustering performance

Adjusted Rand Index
Algo. Distance A B C

HC-AL

(1− ρ)/2 0.00 ±0.01 0.99 ±0.01 0.56 ±0.01

E[(X − Y )2] 0.00 ±0.00 0.09 ±0.12 0.55 ±0.05

GPR θ = 0 0.34 ±0.01 0.01 ±0.01 0.06 ±0.02

GPR θ = 1 0.00 ±0.01 0.99 ±0.01 0.56 ±0.01

GPR θ = .5 0.34 ±0.01 0.59 ±0.12 0.57 ±0.01

GNPR θ = 0 1 0.00 ±0.00 0.17 ±0.00

GNPR θ = 1 0.00 ±0.00 1 0.57 ±0.00

GNPR θ = .5 0.99 ±0.01 0.25 ±0.20 0.95 ±0.08

KM++

(1− ρ)/2 0.00 ±0.01 0.60 ±0.20 0.46 ±0.05

E[(X − Y )2] 0.00 ±0.00 0.34 ±0.11 0.48 ±0.09

GPR θ = 0 0.41 ±0.03 0.01 ±0.01 0.06 ±0.02

GPR θ = 1 0.00 ±0.00 0.45 ±0.11 0.43 ±0.09

GPR θ = .5 0.27 ±0.05 0.51 ±0.14 0.48 ±0.06

GNPR θ = 0 0.96 ±0.11 0.00 ±0.01 0.14 ±0.02

GNPR θ = 1 0.00 ±0.01 0.65 ±0.13 0.53 ±0.02

GNPR θ = .5 0.72 ±0.13 0.21 ±0.07 0.64 ±0.10

AP

(1− ρ)/2 0.00 ±0.00 0.99 ±0.07 0.48 ±0.02

E[(X − Y )2] 0.14 ±0.03 0.94 ±0.02 0.59 ±0.00

GPR θ = 0 0.25 ±0.08 0.01 ±0.01 0.05 ±0.02

GPR θ = 1 0.00 ±0.01 0.99 ±0.01 0.48 ±0.02

GPR θ = .5 0.06 ±0.00 0.80 ±0.10 0.52 ±0.02

GNPR θ = 0 1 0.00 ±0.00 0.18 ±0.01

GNPR θ = 1 0.00 ±0.01 1 0.59 ±0.00

GNPR θ = .5 0.39 ±0.02 0.39 ±0.11 1

Graph (Tumminello et al., 2005) and its associated algorithm the Directed Bubble Hierarchical Tree
(DBHT) technique (Song et al., 2012). In practice, econophysicists consider the assets log returns
and compute their correlation matrix. The correlation matrix is then filtered thanks to a clustering
of the correlation-network (Di Matteo et al., 2010) built using similarity and dissimilarity matrices
which are derived from the correlation one by convenient ad hoc transformations. Clustering these
correlation-based networks (Onnela et al., 2004) aims at filtering the correlation matrix for standard
portfolio optimization (Tola et al., 2008). Yet, adopting similar approaches only allow to retrieve
information given by assets co-movements and nothing about the specificities of their returns be-
haviour, whereas we may also want to distinguish assets by their returns distribution. For example,
we are interested to know whether they undergo fat tails, and to which extent.

3.3.2 Clustering credit default swaps

We apply the GNPR approach on financial time series, namely daily credit default swap (Hull, 2006)
(CDS) prices. We consider the N = 500 most actively traded CDS according to DTCC (http:
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Figure 5: Empirical consistency of clustering using GNPR as T →∞

//www.dtcc.com/). For each CDS, we have T = 2300 observations corresponding to historical
daily prices over the last 9 years, amounting for more than one million data points. Since credit
default swaps are traded over-the-counter, closing time for fixing prices can be arbitrarily chosen,
here 5pm GMT, i.e. after the London Stock Exchange trading session. This synchronous fixing of
CDS prices avoids spurious correlations arising from different closing times. For example, the use
of close-to-close stock prices artificially overestimates intra-market correlation and underestimates
inter-market dependence since they have different trading hours (Martens and Poon, 2001). These
CDS time series can be consulted on the web portal http://www.datagrapple.com/.

Assuming that CDS prices (P t)t≥1 follow random walks, their increments ∆P t = P t − P t−1

are i.i.d. random variables, and therefore the GNPR approach can be applied to the time series of
prices variations, i.e. on data (∆P t1 , . . . ,∆P

t
N ), t = 1, . . . , T . Thus, for aggregating CDS prices

time series, we use a clustering algorithm (for instance, Ward’s method (Ward, 1963)) based on the
GNPR distance matrices between their variations.

Using GNPR θ = 0, we look for distribution information in our CDS dataset. We observe that
clustering based on the GNPR θ = 0 distance matrix yields 4 clusters which fit precisely the multi-
modal empirical distribution of standard deviations as can be seen in Fig. 6. For GNPR θ = 1, we
display in Fig. 7 the rank correlation distance matrix obtained. We can notice its hierarchical struc-
ture already described in many papers, e.g. (Mantegna, 1999), (Brida and Risso, 2010), focusing
on stock markets. There is information in distribution and in correlation, thus taking into account
both information, i.e. using GNPR θ = 0.5, should lead to a meaningful clustering. We verify this
claim by using stability as a criterion for validation. Practically, we consider even and odd trading
days and perform two independent clusterings, one on even days and the other one on odd days.
We should obtain the same partitions. In Fig. 8, we display the partitions obtained using the GNPR
θ = 0.5 approach next to the ones obtained by applying a L2 distance on prices returns. We find
that GNPR clustering is more stable than L2 on returns clustering. Moreover, clusters obtained from
GNPR are more homogeneous in size.

To conclude on the experiments, we have highlighted through clustering that the presented approach
leveraging dependence and distribution information leads to better results: finer partitions on syn-
thetic test cases and more stable partitions on financial time series.

4 Discussion

In this paper, we have exposed a novel representation of random variables which could lead to
improvements in applying machine learning techniques on time series describing underlying i.i.d.
stochastic processes. We have empirically shown its relevance to deal with random walks and
financial time series. We have led a large scale experiment on the credit derivatives market no-
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Figure 6: Standard Deviation Histogram. The 4 clusters found using GNPR θ = 0 represented by
the 4 colors fit precisely the multi-modal distribution of standard deviations.

Figure 7: Centered Rank Correlation Distance Matrix. GNPR θ = 1 exhibits a hierarchical structure
of correlations: first level consists in Europe, Japan and US; second level corresponds to credit
quality (investment grade or high yield); third level to industrial sectors.
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Figure 8: Better clustering stability using the GNPR approach: GNPR θ = 0.5 achieves ARI = 0.85;
L2 on returns achieves ARI 0.64; The two leftmost partitions built from GNPR on the odd/even
trading days sampling look similar: only a few CDS are switching from clusters; The two rightmost
partitions built using a L2 on returns display very inhomogeneous (odd-2,3,9 vs. odd-4,14,15) and
unstable (even-1 splitting into odd-3 and odd-2) clusters.

torious for not having Gaussian but heavy-tailed returns, first results are available on website
www.datagrapple.com. We also intend to lead such clustering experiments for testing ap-
plicability of the method to areas outside finance. On the theoretical side, we plan to improve the
aggregation of the correlation and distribution part by using elements of information geometry the-
ory and to study the consistency property of our method.
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Meinshausen, N., Bühlmann, P., 2010. Stability selection. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 72, 417–473.

Monti, S., Tamayo, P., Mesirov, J., Golub, T., 2003. Consensus clustering: a resampling-based
method for class discovery and visualization of gene expression microarray data. Machine learn-
ing 52, 91–118.

Musmeci, N., Aste, T., Di Matteo, T., 2014. Relation between Financial Market Structure and the
Real Economy: Comparison between Clustering Methods.

Onnela, J-P., Kaski, K., Kertész, J., 2004. Clustering and information in correlation based financial
networks. The European Physical Journal B-Condensed Matter and Complex Systems 38, 353–
362.

13



Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pret-
tenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12, 2825–2830.

Percival, D., Walden, A., 2006. Wavelet methods for time series analysis.
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Song, W.M., Matteo, D., Aste, T., 2012. Hierarchical Information Clustering by Means of Topolog-

ically Embedded Graphs. PLoS ONE 7, e31929+.
Tola, V., Lillo, F., Gallegati, M., Mantegna, R.N. 2008. Cluster analysis for portfolio optimization.

Journal of Economic Dynamics and Control 32, 235–258.
Tumminello, M., Aste, T., Di Matteo, T., Mantegna, R.N., 2005. A tool for filtering information in

complex systems. Proceedings of the National Academy of Sciences USA 102, 10421–10426.
Tumminello, M., Lillo, F., Mantegna, 2010. Correlation, hierarchies, and networks in financial

markets. Journal of Economic Behaviour and Organization.
Ward, J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of the American

Statistical Association 58, 236–244.

14


	1 Introduction
	1.1 Motivation and goal of study
	1.2 Shortcomings of a standard machine learning approach

	2 A generic representation for random variables
	2.1 A representation preserving total information
	2.2 A distance between random variables
	2.3 A non-parametric statistical estimation of d

	3 Experiments and applications
	3.1 Synthetic datasets
	3.2 Performance of clustering using GNPR
	3.3 Application to financial time series clustering
	3.3.1 Clustering assets: a (too) strong focus on correlation
	3.3.2 Clustering credit default swaps


	4 Discussion

