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We show that the Kullback-Leibler distance is a good measure of the statistical uncertainty of
correlation matrices estimated by using a finite set of data. For correlation matrices of multivariate
Gaussian variables we analytically determine the expected values of the Kullback-Leibler distance of
a sample correlation matrix from a reference model and we show that the expected values are known
also when the specific model is unknown. We propose to make use of the Kullback-Leibler distance
to estimate the information extracted from a correlation matrix by correlation filtering procedures.
We also show how to use this distance to measure the stability of filtering procedures with respect
to statistical uncertainty. We explain the effectiveness of our method by comparing four filtering
procedures, two of them being based on spectral analysis and the other two on hierarchical clustering.
We compare these techniques as applied both to simulations of factor models and empirical data.
We investigate the ability of these filtering procedures in recovering the correlation matrix of models
from simulations. We discuss such an ability in terms of both the heterogeneity of model parameters
and the length of data series. We also show that the two spectral techniques are typically more
informative about the sample correlation matrix than techniques based on hierarchical clustering,
whereas the latter are more stable with respect to statistical uncertainty.
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I. INTRODUCTION

advisable to select statistically reliable information from

The empirical analysis of interactions between the ele-
ments of a complex system is fundamental to understand
both the collective structures and the basic rules inducing
the emergent behavior of complex systems. The monitor-
ing of several complex systems nowadays produces large
sets of multivariate data. Examples of these sets of data
are present in physical [1, 2], biological [3, 4, 15] and eco-
nomic systems [6, (7, [8] and their analysis is an important
and challenging task in the investigation of complex sys-
tems. Many efforts have been done in the analysis of
multivariate data series and most of them focus on the
study of pair cross-correlations. The analysis of cross-
correlation is precious in order to elicit the emergence
of collective structures from multivariate data. Classical
spectral methods such as the principal component anal-
ysis [9], recent related techniques based on concepts of
random matrix theory |6, [7], hierarchical clustering [10],
factor analysis [9] and graph theory [11] are fruitful ap-
proaches to the analysis of correlations among elements
of complex systems elicited by multivariate data.

Cross-correlations estimated from real data are un-
avoidably affected by the statistical uncertainty due to
the finite size of the sample. In most cases, the length
of data is unavoidably limited whereas in other cases the
length of data needs to be limited to avoid that sizable
non-stationary effects might introduce large errors in the
estimation of correlations. Cross-correlations might also
be affected by noise due to measurement errors and to
the interaction of the system with the environment. In
order to at least partially overcome these problems, it is

the correlation matrix. We address the selection of the
most statistically reliable part of the correlation matrix
with the locution filtering of the correlation matriz.

Several techniques have been proposed in the literature
in order to filter out information from the correlation
matrix and therefore it is important to have at hand a
method for comparing the performance of such different
techniques in a quantitative way.

In this paper, we propose to measure the performance
of filtering procedures by using the Kullback-Leibler dis-
tance [12] which is a measure of distance between prob-
ability distributions and it is widely used in information
theory (see for instance [13]). Specifically, for multivari-
ate Gaussian variables, we explicitly compute the analyt-
ical form of the Kullback-Leibler distance and we show
how it depends on the correlation matrices of the con-
sidered sets of data or of filtered versions of them. Un-
der the same assumptions we analytically obtain the ex-
pected values of the Kullback-Leibler distance between
the correlation matrix of a multivariate model and a sam-
ple correlation matrix obtained with the Pearson estima-
tor from a finite set of data. One of our key results is
that these expected values are model independent. This
result shows that the Kullback-Leibler distance is very
good in quantifying the amount of information present
in a sample correlation matrix with respect to an hypo-
thetical reference model also in the cases when the spe-
cific nature of the model is unknown. We are also able
to compute the expected value of the Kullback-Leibler
distance between two distinct samples of the correlation
matrix obtained from the same random source. This last
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quantity is very useful in quantifying the stability asso-
ciated with any sample estimation and specifically with
the stability of the correlation matrices obtained from
filtering procedures.

We show the effectiveness of the use of the Kullback-
Leibler distance in comparing data and models and in
assessing the stability of the estimation of the sample
correlation matrix by investigating four different filter-
ing methods. Two of them are based on spectral anal-
ysis, while the other two are generated by hierarchical
clustering procedures. A good filtered correlation matrix
is supposed to be informative about the sample corre-
lation matrix and, at the same time, to be statistically
more robust than the sample matrix itself with respect to
statistical uncertainty. In our investigation we consider
in a quantitative way both these aspects.

The paper is organized as follows. In section [[Il we
present the analytical results of the expected values
of the Kullback-Leibler distance and we show how the
Kullback-Leibler distance can be used as an estimator of
the goodness of filtering procedures. In section [T we de-
scribe the four filtering procedures that we quantitatively
compare in section [[V] both by investigating simulations
and real data. Finally, in section [Vl we draw our conclu-
sions.

II. KULLBACK-LEIBLER DISTANCE

The Kullback-Leibler distance (see for instance [13]) or
mutual entropy is a measure of the distance between two
probability densities, say p and ¢, which is defined as

K(p,q) = Ep [log (g)} : (1)

where E,[.] indicates the expectation value with re-
spect to the probability density p. The Kullback-

K(P(21,X), P(£2,X)) = Epz, x) [log (

By performing the integral in Eq. (2) one obtains:

K(P(S1,X), P(S5, X)) = 5 [log (%)+

+tr (227121) - n] 5 (3)

where n is the dimension of the space spanned by the
X variable and |X| indicates the determinant of 3. In
Appendix A we show how to derive the last equation
from Eq. @). Eq. @) shows that the Kullback-
Leibler distance is an explicit function of only the cor-
relation matrices X7 and Yo for multivariate normal
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Leibler distance is asymmetric. In Eq.( ) the expec-
tation value is evaluated according to the distribution
p. Since the property of symmetry is sometimes impor-
tant a symmetrization of the Kullback-Leibler distance,
called Jefferys-Kullback-Leibler J-divergence has been in-
troduced [12, [14]. In other cases the asymmetry could
also be an useful feature of a distance measure. This
is the case when objects of different nature (or simply
with different statistical meaning) are compared. The
Kullback-Leibler distance is widely used in information
theory. The mutual information between two random
variables X and Y is defined as K(p(X,Y),p(X)p(Y))
(see for instance [13]), where p(X,Y") is the joint prob-
ability density function of X and Y, whereas p(X) and
p(Y) are the corresponding marginal probabilities. In
this case, the asymmetry is important because the mu-
tual information is measuring the error one commits in
considering two random variables as independent vari-
ables. Accordingly, this measure is performed by evalu-
ating the distance between the correct joint probability
p(X,Y) and the product p(X)p(Y), averaging the result
over p(X,Y).

Here we consider the Kullback-Leibler distance be-
tween multivariate Gaussian random variables. We con-
sider variables with zero mean and unit variance without
loss of generality because we are interested in the compar-
ison of the correlation matrices of the two set of variables.
In this case, the Gaussian multivariate distribution asso-
ciated with the random vector X is completely defined
by the correlation matrix ¥ of the system. In the fol-
lowing we indicate the probability density function with
P(X,X). Given two different probability density func-
tions P(X1,X) and P(X2, X), we have

)} /P 31, X)log [Pg:Xﬂ dx, (2)

distributions.  Therefore, from now on we indicate
K(P(X¥1,X),P(X2,X)) simply with K(X1,X2). It is
worth noting that the Kullback-Leibler distance takes
naturally into account the statistical nature of correlation
matrices. Indeed K (X1, X2) is well defined only provided
that the matrices X7 and X5 are positive definite. This
property is not common to other measures of distance
between matrices which are based essentially on the iso-
morphism between the matrix space and a vector space,
e.g. the Frobenius distance (see below). However this
property can also be a limitation. The Kullback-Leibler



distance cannot be used to quantify the distance between
semi-positive correlation matrices that are observed when
the length T of data series is smaller than the number n
of elements of the system. The Kullback-Leibler distance
is also related to the Maximum Likelihood Factor Analy-
sis (MLFA) [9]. In fact, the log-likelihood function to be
maximized in order to describe a system of n elements
with sample correlation matrix C estimated from data
series of length T, with a certain k-factor model with
correlation matrix ¥ is given by:

L(C,2y) = ~TK(C, ) — %T[log(|2ﬂ'C|) —n]. (4)

In the MLFA, L(C, Xx) is maximized with respect to 2.
This maximization is therefore equivalent to minimize
the Kullback-Leibler distance K (C, Xy ) with respect to
Yk, because the other terms in Eq. () are independent
of 3. It is to notice that in Eq. (@) the empirical correla-
tion matrix C is the one estimated from the investigated
data and one calibrates the correlation matrix 3 of the
model by maximizing L(C, Xy). This fact explains why
the log-likelihood is depending on K (C, Xy) instead of
K(Xy, C).

In this paper we want to apply the Kullback-Leibler
distance to sample correlation matrices obtained with
the Pearson estimator. Since different realizations of the
process give rise to different samples, a Kullback-Leibler
distance having one or two sample correlation matrices as
arguments is a function of one or two random matrices.
It is known that sample covariance matrices of finite vari-
ance variables belong to the ensemble of Wishart random
matrices and many statistical properties of Wishart ma-
trices are known [9]. It is therefore useful to investigate
the statistical properties of Kullback-Leibler distance in-
volving sample correlation matrices of multivariate Gaus-
sian random variables. These properties will be useful in
the next section as absolute terms of comparison of fil-
tering procedures of the correlation matrix.

Let us consider a multinormally distributed random
vector X of dimension n with correlation matrix 3. Let
C; and C; be two sample correlation matrices obtained
from two independent realizations of the system both of
length T'. By making use of the theory of Wishart ma-
trices |9] we obtain that

BIK(2.Co)l = 5 {ntog (7 )+
£l

p=T—-n+1

n(n+1)
T—n-1[("

(5)

BIK(Cy D)= {noe (3 ) -
-x sl e

p=T—n+1

and

1 nn+1)

E[K(Cy,Co)l = 577,

(7)

where T'(z) is the usual Gamma function and I (z) is the
derivative of I'(x). In Appendix B we show how to derive
these expectation values. Finally, it is possible to give the
asymptotic expectation value of the standard deviation
of K(Cy,X) by using the Bartlett statistics [15]. Specif-
ically if T'> 1, n > 1 and @ = T/n > 1 we infer that
the standard deviation of K(Cq,X) is ox ~ 1/(2Q).

It is important to observe that all the expectation values
given in Eq.s (Blf7)) are independent of X, i.e. they are
independent of the specific model. This fact implies that
(i) the Kullback-Leibler distance is a good measure of the
statistical uncertainty of correlation matrix which is due
to the finite length of data series and (ii) the expected
value of the Kullback-Leibler distance is known also when
the underlying model hypothesized to describe the sys-
tem is unknown. This fact has important consequences.
Suppose one knows that the observed data are well ap-
proximated by a multivariate Gaussian distribution and
that one measures a sample correlation matrix C. In
order to remove some unavoidably present statistical un-
certainty, the experimenter applies a filtering procedure
to the data obtaining the filtered correlation matrix Cflt,
If the filtering technique is able to recover the model cor-
relation matrix, i.e. C* = ¥ the Kullback-Leibler dis-
tance K (C, Ci) must be equal on average to the value
given in Eq. (@). This expected value is independent on
the (unknown) model correlation matrix 3. Therefore
large deviations from this expectation value indicate that
the filtered matrix is not consistent with the true matrix
of the system. If K(C,CH) is significantly smaller (in
terms of the error ox ~ 1/(2Q)) than the expectation
value of Eq. (@), it means that the filtering procedure
has at most partially removed the statistical uncertainty,
i.e. the filtered matrix is keeping some of the statistical
uncertainty due to the finite length 7. If, on the other
hand, K (C, Cf!*) is significantly larger than the value of
Eq. (@), it means that the filtered matrix is either filter-
ing too much information or distorting the signal. The
distance between K (C,CH!*) and the expected value of
Eq. (@) is a measure of the goodness of the filtering pro-
cedure in keeping the maximal amount of information
which can be present in sample correlation matrices es-
timated with a finite number of records.

A second aspect concerns the stability of the filtered
correlation matrix obtained from a sample matrix. Let us
suppose to apply a certain filtering procedure to the cor-
relation matrices C; and Cs of two independent realiza-
tions of the system, obtaining two filtered correlation ma-
trices Ci!* and CH. If it turns out that K (CH!t, CHt)
is larger than the expected value of K(Cy, Cz) described
by Eq. (@), one can conclude that the filtering procedure
produces correlation matrices less reproducible than the
sample correlation matrices and therefore the procedure
is not suitable for the purpose of filtering robust infor-



mation from the empirical correlation matrices C; and
C..

In summary we have shown that the Kullback-Leibler
distance is very good for comparing correlation matrices
because (i) it is an asymmetric distance and therefore it
can distinguish between quantities observed in real sys-
tems and used to model the empirical observations, e.g.
the sample correlation matrix and the filtered correla-
tion matrix respectively; (ii) the expectation values of the
Kullback-Leibler distance given in Eq.s (BHT) are model
independent, indicating that this distance is a good es-
timator of the statistical uncertainty due to the finite
size of the empirical sample; (iii) the Kullback-Leibler
distance is intimately related to the log-likelihood func-
tion used in MLFA and (iv) it is deeply related with
concepts of information theory, such as the the mutual
information. These properties are not observed in other
widespread distances between matrices. For example, we
shall show that we do not find these properties in the
Frobenius distance, which is a standard measure of the
distance between matrices.

The Frobenius distance between two n X n matrices
¥, and X3, of real elements sllj and sfj respectively, is
defined as

F(%,%:) = \/Z?:l 21 (siy —s)?

- \/tr {(21 — ) (2 — Ez)T} (8)

We note that the Frobenius distance is symmetric.
Therefore it cannot assign a different role to a model
correlation matrix 3 with respect to some sample C of
3. We also observe that this distance is well defined in-
dependently of the statistical nature of matrices X7 and
32, i.e. these matrices can also be non positive definite.
Finally and more important, we want to show, for a sim-
ple system of two variables, that the expectation value of
the Frobenius distance between a true correlation matrix
and its Pearson estimator is model dependent, i.e. this
expectation value depends on the true correlation matrix.

Let wus consider a bivariate normal distribution
N(0,%), where 3 is a 2 x 2 correlation matrix and 0
is the null vector of dimension 2. We indicate the only
entry of ¥ different from 1 with p. The sample correla-
tion matrix C is defined as

1

C= ) (9)

=

P

where p is the Pearson correlation coefficient estimated
from a realization of N(0,3) of length 7. Tt results that

F(2,C)=v2[p—jl (10)

The distribution of p is approximately Gaussian for large
values of T. The mean value of p is p and the standard

4

deviation is (1 — p?)/v/T [16]. Accordingly, the expec-
tation value of the Frobenius distance between the two
matrices is:

2
vl

This result shows that the Frobenius distance is model
dependent and therefore it is not a good estimator of the
statistical uncertainty of correlation matrix due to the
finite length of data series.

E[F(2,C)] = ——=(1-p?) (11)

III. FILTERING PROCEDURES

In this section we describe four procedures that can be
used to filter correlation matrices. Two procedures are
based on spectral techniques, i.e. they are based on the
comparison between the spectrum of the sample corre-
lation matrix and the spectrum expected for a random
matrix. These procedures are described in some detail in
subsection [ITAl The other two techniques that we con-
sider here are hierarchical clustering procedures. Specif-
ically, we obtain two different filtered matrices by apply-
ing the Single Linkage Cluster Analysis (SLCA) and the
Average Linkage Cluster Analysis (ALCA) to the sam-
ple correlation matrix of the system. The ALCA and
SLCA are standard procedures of hierarchical clustering
and we describe how these techniques generate filtered
correlation matrices in subsection [T Bl

A. Spectral methods

Random matrix theory [17] was originally developed in
nuclear physics and then applied to many different fields.
Let us consider n independent random variables with fi-
nite variance and T records each. The sample correlation
matrix of the system in the limit 7' — oo is simply the
identity matrix. When T is finite the correlation ma-
trix will in general be different from the identity matrix.
Random matrix theory allows to prove that in the limit
T,n — oo, with a fixed ratio Q@ = T'/n > 1, the eigenval-
ues of the sample correlation matrix C cannot be larger
than

)\mam:02(1+1/Q+2V1/Q)7 (12)

where 02 = 1 for correlation matrices. The idea underly-
ing both the spectral filtering procedures considered here
is that of reducing the impact of eigenvalues smaller than
Amaz On the structure of an empirical correlation matrix,
in order to remove the effects of those eigenvalues that
are consistent with the null hypothesis of uncorrelated
random variables. In some practical cases, such as for
example in finance, one finds that the largest eigenvalue
A1 of the empirical correlation matrix is definitely incon-
sistent with random matrix theory. In these cases, the
null hypothesis is modified so that correlations can be



explained in terms of a one factor model. Accordingly,
when A\ >> A\jnaz we set 02 =1 — \;/n in Eq. [@2) [6].
The first filtering procedure we consider here has been
used by Rosenow et al. in Ref. [18]. The technique con-
sists in replacing the eigenvalues smaller than A, in
the diagonal matrix D of eigenvalues of C with 0’s, thus
obtaining a new diagonal matrix Dg. One can there-
fore compute the matrix Qs = VT DLV of elements
qisj, where V is the matrix of eigenvectors of C. Fi-

nally, the filtered correlation matrix CS of elements cfj
is obtained by forcing the diagonal elements of Qg to
1, ie. ¢ = & + ¢ (1 — bij), where d;; is the stan-
dard Kronecker symbol. The second procedure we ap-
ply has been considered by Potters et al. in Ref. [19].
Here, eigenvalues smaller than A, in D are replaced
with their average value in the diagonal matrix Dg. As
in the previous case, one rotates the matrix D getting
the matrix Qg = VT DgV of elements qu;, where again
V is the matrix of eigenvectors of C. Finally, the fil-
tered correlation matrix CB is the matrix of elements
cih = qf/\/a5 ¢F . Both the matrices C® and CP® sat-
isfy the properties of a correlation matrix, i.e. (i) they
are positive definite; (ii) their diagonal elements are equal
to 1 and (iii) their off-diagonal elements are in absolute

value smaller or equal to 1.

B. Hierarchical Clustering Procedures

Another approach used to filter the information associ-
ated with the correlation matrix is given by hierarchical
clustering analysis [10]. Let us consider a set of n ob-
jects and suppose that a similarity measure, e.g. the cor-
relation coefficient, between pairs of elements is defined.
Similarity measures can be written in a n x n similarity
matrix. The hierarchical clustering methods allow to hi-
erarchically organize the elements in clusters. A result
of the procedure is a rooted tree or dendrogram giving
a quantitative description of the clusters thus obtained.
Another result of the procedure is a filtered correlation
matrix. Indeed the whole information about the rooted
tree can be stored in a n x n matrix C< [10]. We have
recently shown [20] that, when the entries of C< are non
negative numbers, this matrix is the correlation matrix
of a suitable factor model, that we have named Hierarchi-
cally Nested Factor Model (HNFM). This result ensures
that, under the condition of non negative entries of C<
(typically satisfied in many empirical applications), this
matrix is a true correlation matrix, i.e. it is positive def-
inite.

A large number of hierarchical clustering procedures
can be found in the literature. For a review about the
classical techniques see for instance Ref. [10]. In this

paper we focus our attention on the SLCA and the
ALCA.

The starting point of both the procedures is the em-

pirical correlation matrix C. The following procedure
performs the ALCA giving as an output a rooted tree
and a filtered correlation matrix Cxpc, of elements ¢

1. Set B=C.

2. Select the maximum correlation by, in the corre-
lation matrix B. Note that after the first step of
construction h and k can be simple elements (i.e.
clusters of one element each) or clusters (sets of el-
ements). Vi € h and Vj € k one sets the elements

< <

: < < _ _
i of the matrix C3y,ca as C; =C5i = bk

3. Merge cluster h and cluster k into a single cluster,
say q. The merging operation identifies a node in
the rooted tree connecting clusters h and k at the
correlation by.

4. Redefine the matrix B:

np bpj + Nk b e . .
bqj = W lfj §§handj ¢k

bij = bij OthGI‘WiSG,

where nj;, and ny are the number of elements be-
longing respectively to the cluster h and to the clus-
ter k before the merging operation. Note that if the
dimension of B is m x m then the dimension of the
redefined B is (m — 1) x (m — 1) because of the
merging of clusters h and k into the cluster gq.

5. If the dimension of B is larger than 1 then go to
step 2, else Stop.

By replacing point 4 of the above algorithm with the
following item

4. Redefine the matrix B:

bqj = Mazx [bhj, bkj]
bij = bij

ifj¢handyj ¢k

otherwise,

one obtains an algorithm performing the SLCA and the
associated filtered correlation matrix C§y g, - In the fol-
lowing, we indicate the matrices Cgca and Circa
with CSFCA and CALCA  respectively, in order to sim-
plify the notation.

IV. COMPARISON OF FILTERING
PROCEDURES

We have applied the four filtering procedures described
in the previous section to both real and artificial systems.
We have considered the real system of daily returns of the
100 most capitalized stocks traded at New York Stock
Exchange (NYSE) in the time period from January 2001
to December 2003. In this case, the length of the n = 100
time series is T' = 748 records. We have also considered
the system of daily returns of 92 highly capitalized stocks



traded at London Stock Exchange in 2002. The length
of the n = 92 time series is T' = 250 for this system. We
have also applied the filtering procedures to two artificial
systems of n = 100 elements each. Both these systems
are described by a factor model [9]. A factor model is
a mathematical model which describes the correlation
among a set of elements that we indicate with z; (i =
1,...,n), in terms of a certain number of common factors
fx (k=1,..., P). The linear dependence of elements from
factors is mathematically expressed as

P
zi(t) =Y Yiufr(t) + miei(t), (13)
k=1

where i € {1,...,n}, n; = [1 = X1, 72]Y/2. The k' fac-
tor fi(t) and €;(¢) are independent identically distributed
random variables with zero mean and unit variance. In
our simulations, the factors fi(t) (kK = 1,..., P) and the
idiosyncratic noises €;(t) (i = 1,...,n) are Gaussian ran-
dom variables.

In the first artificial system that we consider here, el-
ements are grouped in P = 12 orthogonal clusters. In
terms of factor models, this orthogonal grouping of el-
ements is expressed by the fact that elements belong-
ing to different clusters depend on different (indepen-
dent) factors, i.e. if x; belongs to the group k then
2;(t) = Yir f1(t) +mi€i(t). The dimension of groups is het-
erogeneous to mimic typical conditions observed in some
real systems. Specifically the number of elements belong-
ing to each group ranges from a minimum of 3 elements
to a maximum of 17. The other artificial system that we
have considered is described by a HNFM with P = 23 fac-
tors. This empirically based model has been introduced
in Ref. [20]. We have chosen these two models because
they are conceptually very different one from the other.
In fact, in the HNFM elements cannot be straightfor-
wardly divided in groups because they depend on factors
in a nested hierarchical way whereas in the other model
the groups of elements are clearly distinguished because
elements belonging to different groups depend on differ-
ent and mutually independent factors. Roughly speak-
ing we can say that the block diagonal model describes
a “separable” system whereas the HNFM represents a
“nested” system. In a first analysis, both the considered
factor models are degenerate models, i.e. the coefficient
ik, Which expresses the dependence of the element i on
the factor k in the model of Eq. (I3)), is only depending
on the factor and not on the element. It is to notice that
by applying either the ALCA or the SLCA to the corre-
lation matrix of the two considered models one obtains
back the correlation matrix of the models. This fact is
due to the degeneracy of the models and it gives a cer-
tain advantage to hierarchical clustering procedures with
respect to spectral techniques in reconstructing the true
correlation matrix of these systems. In fact both the con-
sidered spectral techniques cannot reconstruct the true
correlation matrix 3 of the system when applied to ¥
itself. This is the first reason why we have decided to

perform other simulations of the systems by removing
the degeneracy from models. The second reason is that
the true correlation matrix of the system is in general
unknown for real data: we have only one correlation ma-
trix obtained from a single realization of the system with
finite time series length T'. Accordingly, we have decided
to perform one single realization, say X, with length Tg
of data series of each model and we have assumed that
the correlation matrix Cr, of this single realization of
each model represents the true correlation matrix of the
corresponding system. This approach removes the de-
generacy of the vy-parameters of models and at the same
time allows to treat models in a way more similar to the
one used for real data. In order to test the stability of fil-
tering procedures with respect to statistical uncertainty
(as discussed in subsection [V BI), we have constructed
bootstrap replicas of the single realization X, of each
model. The bootstrap approach has the advantage that
it does not require to make assumptions about the data
distribution !.

We have simulated 1000 independent sets of data for
the artificial systems described by the degenerate models
and we have constructed 1000 bootstrap replicas [22, 23]
of the empirical data. We have also considered 1000 boot-
strap replicas of the single realization with series length
T4 of both the artificial systems, in order to treat the
models more similarly to real data. We have applied all
the filtering procedures described above to the correla-
tion matrix C; of each simulation or replica ¢ of the ar-
tificial systems and to each replica i of the real systems.
Therefore, we have obtained four filtered correlation ma-
trices that we indicate with C?lt associated with each
realization or replica ¢ of the systems. The label filt in
CHilt stands for ALCA, SLCA, B and S depending on the
filtering procedure.

A. Information about the model

The first question we want to ask is which filtering
procedure performs better in detecting the correlation
matrix of the model. We can ask this question only for
the simulations where we know the model correlation ma-
trix used to generate the data. In order to evaluate the
ability of filtering procedures in reconstructing the cor-
relation matrix of the model X, we have evaluated the

1 We have also used the Cholesky decomposition of Cr 4 instead of
the bootstrap approach, in order to obtain different realizations
of the non degenerate systems. The Cholesky decomposition ap-
proach [21] allows to construct mutually independent realizations
of the system. However results obtained with the Cholesky de-
composition are in complete agreement with results obtained by
using the bootstrap technique that we report in the paper. It
is also to notice that by using the Cholesky decomposition to
perform simulations it is necessary to know the data distribution
(e.g. Gaussian or Student-t), whereas the bootstrap approach
does not require to make assumptions about such distribution.



average Kullback-Leibler distance (K (X, Cfi*)) between
the correlation matrix of the model and the correlation
matrix filtered from the samples. Averages have been
performed over 1000 realizations of the models. The
smaller (K (X, CH!t)) the larger is the amount of infor-
mation about the model that is detected by the filtered
matrix. In Tables I and II we distinguish between de-
generate models that we indicate with “Block diagonal”
and “HNFM” and non degenerate models that we indi-
cate with “Block diagonal (n.d.)” and “HNFM (n.d.)”.
In Table I we report results obtained for all the consid-
ered models when the length of simulated normally dis-
tributed time series is T' = 748. In the table, we observe
that the ALCA outperforms all the other filtering pro-
cedures both for degenerate and non degenerate models.
It is also to notice that the performance of SLCA is bet-
ter than both the spectral filtering procedures for all the
models with the exception of the non degenerate block
diagonal model. Such a good performance of hierarchi-
cal clustering filtering procedures was expected for the
degenerate models. Indeed, as we have discussed above,
such models give a certain advantage to hierarchical clus-
tering filtering procedures because of the degeneracy of
coefficients. The fact that ALCA outperforms all the
other filtering procedures also in the case of non degener-
ate models can be explained by taking into account both
the length of data series and the way in which model de-
generacy has been removed. The correlation matrix of
the non degenerate models is by construction the corre-
lation matrix of a single realization of the corresponding
degenerate models with series length T,; = 748. This fact
implies that the dispersion of the non degenerate corre-
lations from the corresponding values in the degenerate
model is of the order of D,, = 1/y/Ty = 1/1/748. In Ta-
ble I, the length of simulated data series is also T' = 748,
i.e. T =Ty. This fact implies that the statistical uncer-
tainty associated with the sample correlations is of the
order 1/v/T = 1/+/748. This value is equal to D,,, im-
plying that for series length T' = 748 the non degeneracy
of model parameters is of the same order of the statis-
tical uncertainty. In other words, details about specific
correlation values cannot be distinguished from statisti-
cal uncertainty for such short data series. Only the global
structure of the correlation matrix is important and hier-
archical clustering procedures results to be more capable
than spectral techniques in reconstructing the correlation
structure of the models. In order to better understand

B. Information about the sample correlation
matrix and stability

In this subsection we quantify the amount of infor-
mation that different filtering procedures preserve when

the effect of the non degeneracy of model parameters on
the ability of filtering procedures in reconstructing the
model, we consider also a case with time series of length
longer than in the prevoius case. Specifically, in Table
II we report results obtained for time series of length
T = 7480, which is ten times the length considered in
Table L. In the case of T' = 7480, we continue to observe
a better performance of hierarchical clustering filtering
procedures and in particular of ALCA with respect to
spectral techniques for the degenerate models. This fact
was expected because of the degeneracy of the models.
However, in Table IT we observe that the spectral tech-
nique producing CB as result of the filtering outperforms
hierarchical clustering procedures for the non degenerate
models. The method producing CS provides a result
which is of the same order than CALCA for the block
diagonal (n.d.) model whereas still underperform with
respect to both hierarchical clustering procedures for the
HNFM (n.d.). The success of CB can be explained by
the fact that for T = 7480 the statistical uncertainty
of sample correlations is of the order 1/v/T = 1/1/7480
which is smaller than D,,. Therefore, for T = 7480 the
non degeneracy of models becomes relevant as compared
with the statistical uncertainty affecting sample correla-
tions and spectral techniques result to be more capable
than hierarchical clustering in taking into account such
non degeneracy. This aspect is related to the fact that
ALCA and SLCA are filtering procedures characterized
by n — 1 free parameters whereas spectral methods have
a variable number of free parameters which is scaling as
n? when T tends to infinity.

In summary, we have shown that hierarchical cluster-
ing procedures better reconstruct the degenerate mod-
els both for short and long time series, whereas for the
non degenerate models the length of data series becomes
relevant in the comparison. Specifically, for short time
series (T = 748), such that the statistical uncertainty
of correlations hides the heterogeneity of model parame-
ters, we have observed that hierarchical clustering proce-
dures, and in particular the ALCA, outperform spectral
techniques. On the contrary, for data series long enough
(T = 7480) that the heterogeneity of model parameters
is relevant with respect to the statistical uncertainty of
sample correlations, spectral procedures result typically
to be more efficient than hierarchical clustering proce-
dures in reconstructing the correlation matrix of models.

applied to sample correlation matrices. This is impor-
tant in all those real cases when one does not know the
model correlation matrix. Moreover we investigate the
stability of the filtered correlation matrices with respect
to different realizations of the process. We use two quan-



TABLE I: Average value of the Kullback-Leibler distance between the correlation
matrix of the model and the correlation matrix filtered from the sample one. For
each case average and standard deviation are obtained from 1000 realizations or
bootstrap replicas of the system. (n = 100, T = 748).

Models (K (2, CPYOM) [(K (=, CPR%)) (K (2, CF)) |(K(Z, CF))
Block diagonal 0.154+0.01 0.57 = 0.04 0.84 £0.03 | 1.50 £ 0.05
HNFM 0.22 +£0.02 0.33 £ 0.05 1.99 £0.07 | 2.15 £ 0.08
Block diagonal (n.d.)| 3.56 &+ 0.02 4.36 £0.07 |3.744+0.06 | 4.34 + 0.09
HNFM (n.d.) 3.38 £0.02 3.85 +0.08 4.54+0.08| 5.0£0.1
TABLE II: The same as in Table I but with 7' = 7480.
Models (K(Z, CMM) [(K(, CF9%)) | (K(Z,CF)) [(K(Z,CF))
Block diagonal 0.015£0.001 | 0.105 £ 0.006 |0.162 4 0.006| 0.70 & 0.01
HNFM 0.023 £0.002 | 0.032 £ 0.005 |0.986 & 0.007| 1.44 £ 0.07
Block diagonal (n.d.)| 3.418 4+ 0.004 3.94 £0.02 2.95+£0.02 |3.41 +£0.02
HNFM (n.d.) 3.174 £ 0.008 3.52 £0.02 2.54 £0.04 | 4.66 +=0.09

tities in order to evaluate the performance of the filtering
procedures. The first quantity that we have measured is
the Kullback-Leibler distance K (Cj, Cfil*) between the
correlation matrix Cj of the i-th sample and the filtered
correlation matrix C?lt obtained by applying one of the
filtering procedure to C;. K(Cj, Cll*) is a measure of
the information about C; that is stored in CHlt: the
smaller K (Cj, Cilt), the larger is the amount of infor-
mation about C; which is retained in the filtered ma-
trix. The second quantity that we have considered is the
Kullback-Leibler distance K (C#!*, C#!*) between two fil-
tered matrices Cfi!* and Cf‘lt obtained by applying the
same filtering procedure to two different simulations (or
replicas) ¢ and j of the system. K(C{'*, C{"*) measures
the statistical robustness of filtered matrices. The smaller
K(Chit, CJﬁlt), the greater is the stability of the filtering
procedure with respect to the statistical uncertainty. In
our estimations, we have averaged both K (C;, Cfilt) and
K (Cf*, Cll'*) over the 1000 independent realizations or
replicas of each system.

In Fig. [ we show the results obtained for the block
diagonal model with degenerate coefficients. In the figure
we plot (K(C;, Ci*)) versus (K (Cf*, CHI*)) for all the
described filtering procedures. Averages that we indicate
with the notation (.) are performed over 1000 realizations
and the series length is 1" = 748. Error bars are one stan-
dard deviation. In all the cases presented in this paper
we have verified that the error interval indicated around
the mean value of plus and minus one standard devia-
tion includes approximately the 67% of the realizations
used to compute the mean value. In the figure we also
report the result of an hypothetic perfect filtering proce-
dure, i.e. a filtering techniques which is able to recover
exactly the model from each realization. In the figure,
we indicate the corresponding correlation matrix with 3.

Such a filtering is maximally stable, because it recovers
always the correlation matrix of the block diagonal factor
model. Accordingly, it is (K (X,3)) = 0. This perfect
filtering procedure removes completely the noise due to
the finite length of data series and therefore the quantity
(K(C4, X)) # 0. Instead, it is equal to the expectation
value of Eq. (@), i.e. (K(Cji, X)) ~ 3.54 for n = 100
and T = 748. Note that we know the position in the
plane of the optimal filtering even if we do not know the
underlying model. This is due to the important char-
acteristic that the mean value of the Kullback-Leibler
distance is independent from the model correlation ma-
trix (at least in the multivariate Gaussian case). In the
figure, we observe that all the filtering procedures, ex-
cept the SLCA, retain in average more information about
the sample correlation matrix than the true model, i.e.
(K (C;, Cfit)) < 3.54 for CHI* equal to CAFCA CB and
CS. This fact indicates that these filtering procedures
do not discard completely the noise present in the sample
correlation matrix as a consequence of the finite length of
time series. The SLCA algorithm is the only one which
is retaining less information about the sample correlation
matrix than the true model. Moreover the SLCA is more
stable than all the other filtering procedures.

In Fig. 2 we show the results obtained by applying the
considered filtering procedures to the system described
by the HNFM with P = 23 factors and with degener-
ate coefficients. In this case, only the ALCA is retaining
more information about the sample correlation matrix
than the true model. However it is interesting to note
that both the spectral techniques are at the same time
less informative about the sample correlation matrix and
less stable than both hierarchical clustering filtering pro-
cedures. In other words, for the degenerate HNFM, hier-
archical clustering procedures clearly outperform spectral
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FIG. 1: Block diagonal model with degenerate coefficients.
Comparison of the 4 filtered correlation matrices described in
the text. In the graph we plot the stability of the filtered
matrix (z axis) against the amount of information about the
correlation matrix that is retained in the filtered matrix (y
axis). Small values of (K (Cf'*, C#!*)) and (K (C;, Cf'*)) cor-
respond to large stability and large amount of information
preserved by the filtering respectively. The analysis is per-
formed for a system of 100 elements divided in 12 orthogonal
groups, each one depending on a specific Gaussian factor, i.e.
a block diagonal model. Averages have been performed over
1000 independent realizations of the system and error bars
correspond to one standard deviation.
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FIG. 2: Hierarchically nested factor model with degenerate
coefficients. Comparison of the filtered correlation matrices
produced by the 4 techniques described in the text. The
analyzed system is composed by 100 elements following the
HNFM with 23 factors obtained in Ref. [20]. Averages have
been performed over 1000 independent realizations of the sys-
tem and error bars correspond to one standard deviation.
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FIG. 3: Block diagonal model with non degenerate coeffi-
cients. Comparison of the 4 filtered correlation matrices de-
scribed in the text. The analysis is performed for a system of
100 elements divided in 12 orthogonal groups, each one de-
pending on a specific Gaussian factor, i.e. a block diagonal
model. Averages have been performed over 1000 bootstrap
replicas of a single realization of the system and error bars
correspond to one standard deviation.

techniques. This fact is a consequence of the pure hierar-
chical nature of the HNFM. Indeed in Ref. [20], we have
shown that when the hierarchical features of a system
are prominent with respect to the details of specific cor-
relation values, the spectral procedures have problems in
filtering information about the system. Such problems do
not appear for separable systems, like the block diagonal
model considered above.

In summary, for both the considered models we observe
that hierarchical clustering techniques produce more sta-
ble filtered correlation matrices than spectral procedures.
Concerning the information about the sample correlation
matrix that is stored in the filtering we observe that re-
sults obtained for hierarchical clustering procedures are
closer to the perfect filtering (giving as output the true
model of the system) than spectral techniques. Finally, it
is to notice that the SLCA is the most stable within the
considered filtering procedures. Such an excellent perfor-
mance of hierarchical clustering techniques can be due to
the degenerate nature of models as discussed in the first
part of this section.

In fact when we remove the degeneracy of coefficients
from the models we observe a different behavior of filter-
ing procedures. In Fig. Bl we plot (K(C;, Cf*)) versus
(K (C{", Ci)) for the artificial system obtained from a
single realization X, with time series length Ty = 748
of the factor model with 12 orthogonal factors. This is
equivalent to consider a block model with non degener-
ate coeflicients. In Fig. @ we plot results obtained for
the single realization with length Ty = 748 of time series
of the HNFM with 23 factors. Also in this case our in-
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FIG. 4: Hierarchically nested factor model with non degen-
erate coefficients. Comparison of the filtered correlation ma-
trices produced by the 4 techniques described in the text.
The analyzed system is composed by 100 elements following
the HNFM with 23 factors obtained in Ref. [20]. Averages
have been performed over 1000 bootstrap replicas of a single
realization of the system and error bars correspond to one
standard deviation.

vestigation is equivalent to consider a HNFM with non
degenerate coefficients. Mean values and error bars in the
figures correspond to the average and the standard de-
viation respectively both estimated over 1000 bootstrap
replicas of the single realization of the models. From
Figures [3 and d we note that

(K(Ci,CP)) = (K(C;,CF)) 5
S (K(G;, GRMY)) < (K (G, CFFA))

~

2

In both the figures, we observe that none of the filtering
procedures is more informative about the sample corre-
lation matrix than the true correlation matrix 3 = Cr,
of both the models, i.e. E[K(C,X)] ~ 3.54 is smaller
than any (K (C;, Ciilt)) reported in the figures.

Concerning the stability of the filtered matrices, from
the figures we observe that the SLCA filtered matrix out-
performs all the other techniques, although the filtered
matrix given by ALCA has a stability of the same or-
der of magnitude of the SLCA matrix. A good filtered
correlation matrix should be at least more stable than
the sample correlation matrix with respect to the statis-
tical uncertainty. This sentence can be translated in the
following inequality

(K(CI, Cf1)) < (K(C;, Cy)). (14)

For Gaussian variables we know the expected value of
K(C;, C;j) from Eq. (7)) and thus, for n = 100 and T' =
748, the last inequality becomes

(e oy < el

— ~7.8l. 1
2T —n-1 78 (15)
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FIG. 5: Correlation matrix of a real system composed of 100
stocks traded at NYSE during the period from January 2001
to December 2003. The variable investigated is daily return of
the most capitalized stocks. The length of time series is T' =
748 for this system. Averages have been performed over 1000
bootstrap replicas of data series and error bars correspond to
one standard deviation.

This condition is satisfied by all the considered filtered
matrices. However we stress the fact that the matrices
obtained from hierarchical clustering techniques and in
particular the one obtained by SLCA have a value of
(K (Cf', CfI*)) of an order of magnitude smaller than
the one expected for the Pearson estimator of correla-
tions.

In summary, our investigation of considered models
shows that spectral filtering techniques are slightly more
informative about the sample correlation matrix than
hierarchical clustering filtering techniques when details
about specific correlation values are relevant, like in the
case of non degenerate models. On the contrary, from
the point of view of stability of filtered matrices, hierar-
chical clustering procedures, and in particular the SLCA,
outperform spectral techniques.

C. Empirical data

In this subsection, we compare the filtering procedures
when applied to real data. We have considered the sys-
tem of daily returns of the 100 most capitalized stocks
traded at NYSE in the time period from January 2001 to
December 2003. In this case, the length of the n = 100
time series is 7" = 748 records. We have also consid-
ered the system of daily returns of 92 highly capitalized
stocks traded at London Stock Exchange in 2002. For
this system the record length of the n = 92 time series is
T = 250.

In Fig. Bl we report the results obtained by apply-
ing all the considered filtering procedures to the system
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FIG. 6: Correlation matrix of a real system composed of 92
stocks traded at LSE during the period from January to De-
cember 2002. The variable investigated is daily return of the
most capitalized stocks. The length of time series is T = 250
for this system. Averages have been performed over 1000
bootstrap replicas of data series and error bars correspond to
one standard deviation.

of n = 100 stocks traded at NYSE, while in Fig. [0l
we show the results obtained for the system of n = 92
stocks traded at LSE. In both the figures, we observe
that hierarchical clustering procedures are more stable
than spectral techniques, whereas the latter are more in-
formative about the sample correlation matrix than hi-
erarchical clustering. These facts are in agreement with
results obtained for simulations in the case of non de-
generate models. However this agreement is only qual-
itative. Indeed, both the values of (K (Cj, Cfilt)) and
(K (Cf', CfiI*)) observed for the real systems are larger
than the corresponding values obtained in the case of
simulations. This fact can be due to two effects. The
first one is related to the fact that the real systems can be
characterized by a structure of correlations more complex
than the one considered in the models. For example, the
role of the complexity of correlation structures onto the
performance of filtering procedures was observed in the
simulations of the degenerate models of subsection [VA]
for the spectral techniques. Indeed the performance of
such procedures was rather unsatisfactory for the HNFM
with respect to the block diagonal model. The second
effect that can be responsible for the quantitative differ-
ence between results obtained for simulations and results
obtained for real data can be related to the fact that we
have considered Gaussian variables in the simulations,
whereas the distribution of returns is fat tailed [24].
Some quantitative differences are also evident in the
comparison of the two real systems. Specifically, both the
values of (K(C;, C{'*)) and (K(C{'*, C!*)) are larger
in the LSE data with respect to the NYSE data. This
difference is mainly due to the different length of data
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series, i.e. T = 748 at NYSE and T = 250 at LSE.
The smaller T', the larger is the statistical uncertainty
of the sample correlation matrix. For instance, we can
make quantitative this difference by using the expecta-
tion values of the Kullback-Leibler distance of Eq.s (@)
and (7). For a system of n = 100 elements with data se-
ries of length T' = 748 we have F [K(C1, X)] ~ 3.54 and
E[K(Cq,C2)] ~ 7.81, whereas for a system of n = 92 el-
ements and series length 7' = 250 is E [K(Cq,X)] ~ 9.86
and E[K(Cq,Cz2)] ~ 27.2. A comparison of the results
obtained for Gaussian random models in subsection [V B
with the results obtained for the real systems investi-
gated in this subsection shows that the Kullback-Leibler
distance provides results on real data about the relative
effectiveness of the considered filtering procedures which
are in agreement with those observed for models.

V. CONCLUSIONS

In conclusion we have shown that the Kullback-Leibler
distance can be fruitfully used to compare correlation ma-
trices of multivariate data. We have shown that this dis-
tance is more appropriate to achieve this objective than
the standard Frobenius distance. This fact is due to some
properties of the Kullback-Leibler distance such as the
asymmetry, the model independence of expectation val-
ues and its relation with the maximum likelihood factor
analysis. Sample correlation matrices can be compared
in pairs among them and/or with respect to model ma-
trices or to filtered matrices. We have used the Kullback-
Leibler distance to compare four different techniques used
to obtain a filtered correlation matrix from the empirical
one. Two of the four techniques that we have analyzed
are spectral filtering procedures based on random ma-
trix theory whereas the other two techniques are based
on hierarchical clustering methods, specifically ALCA
and SLCA. Results obtained for simulations are consis-
tent with those obtained for real data. These results
can be summarized as follows: both the considered spec-
tral techniques are slightly more informative about the
sample correlation matrix than the other two techniques
based on hierarchical clustering. On the other hand both
the techniques based on hierarchical clustering are pro-
ducing filtered correlation matrices which are more sta-
ble than those obtained with spectral procedures. These
results show that the Kullback-Leibler distance is very
useful in characterizing multivariate systems described
by real data, factor models and matrices filtered from
the sample one.

In conclusion, the Kullback-Leibler distance is a power-
ful and accurate tool able to characterize the information
and stability of sample, model and filtered correlation
matrices and it is a useful quantitative indicator for the
relative amount of information and the relative stability
of correlation matrices of multivariate data.
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VII. APPENDIX A

In this Appendix, we show how to derive Eq. @) from
Eq. @)). Let us consider the multivariate Gaussian dis-
tributions P(31,X) and P(X2, X) describing the same
random vector X. We have

P(%;, X) = exp (—%XTEi_1X> . (16)

1
v (2m)" %5

By substituting Eq. (I6) into Eq. ([2]) we get

K(P(21,X), P(Z2, X)) = %bg (%) N
1

+7(Il,2 _Il,l)7 (17)
2 (2#)" |21|

where
IZ-J-:/e*%XTEi“X(Xszflx) dx.  (18)

The integral I; ; can be solved by using the linear trans-
formation Y = G;X, where Gj is the orthogonal matrix
which diagonalizes ;. It results that

n

(2m)"™ |55 Z haqbaq; (19)

q=1

Lij =

where hyq (¢ = 1,...,n) are the elements of the diagonal
matrix GjTijlGj, whereas bgy (¢ = 1,...,n) are the
diagonal elements of the matrix GJ-TEiGj. We can fur-
ther simplify the expression of I; ; by taking into account
the fact that the matrix GJ-TEJ-flGJ- is diagonal. Indeed
22:1 hqqbeq = tr[GszjilGjGsziGj] = tr[zjilzi]
due to the orthogonality of Gj and to the invariance of
the trace with respect to rotations. Accordingly, we ob-
tain that

Ly = /@) X5 tr[=; 1), (20)

Finally, we obtain the expression of
K(P(¥1,X),P(22,X)) given in Eq. (@) by sub-
stituting the last expression of I; ; into Eq. (7)) and
noting that tr[X; ' 3;] = n.
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VIII. APPENDIX B

In this Appendix, we derive the expectation values of
the Kullback-Leibler distance given in Eq.s @l7). We
shall use two known results from the theory of Wishart
matrices. Let us consider a multinormally distributed
random vector X of dimension n with correlation matrix
3. Let Cq; and C2 be two sample correlation matrices
obtained from two independent realizations of the sys-
tem, X; and Xy respectively both of length T'. The first
result from the theory of Wishart matrices that we shall
use hereafter is that log|C;il|, i = 1,2 is equal to log |[X| —
nlog(T) plus the sum of the logarithms of n mutually in-
dependent chi-squared random variables yr—_n41, ..., Y7
with degrees of freedom T'—n + 1,...,T — 1,T respec-
tively (see for instance [9]). This fact implies that the
expectation value of log |C;] is

T

S Ellog(y,)]

p=T—-n+1

E(log |Ci|) = log || — nlog(T) +

(21)
Because Ellog(y,)] = I'"(p/2)/T(p/2) + log(2) (see for
instance [25]) we obtain that:

T

3 I'(p/2)

p=T—n+1 T(p/2)

(22)

The other result from the theory of Wishart matrices

that we use here is that the expectation value of the

inverse of C; is F(C; ') = TS /(T —n — 1) (see for

instance [9]). Accordingly we obtain:

E(log|C;il) = log |X| + nlog(2/T) +

nT

Etr (C;7'®)] = E[tr (Ci7'Cy)] = E—

(23)

where we have used the linearity of the trace operator.
Finally, we have:

Eltr(Z7'Cy)] =tr (27'%) =n, (24)

where we have again used the linearity of the trace and
the fact that F(C;) = X. By using Eq.s (22]) and (23)
it is now straightforward to obtain both the expression
of E[K(X,Cy)] as given in Eq. (@) and the expectation
value E[K(C1,Cz2)] as given in Eq. (@). Finally, by
using results of Eq.s (Z2) and ([24]) we obtain the expec-
tation value of K(Cq,3) as given in Eq. (@)).
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